Que conhecimento matemático para ensinar nos anos iniciais? Desafios para a formação
DOI:
https://doi.org/10.18593/r.v46i.23839Palavras-chave:
Conhecimento matemático para ensinar, Formação de professores, Anos iniciaisResumo
São muitos e variados os desafios que hoje se colocam à formação de professores de Matemática. Quando se pensa em professores dos primeiros anos, os desafios são ainda maiores. Por um lado, estes professores são generalistas, não sendo exclusivamente professores de Matemática. Por outro lado, o conhecimento matemático destes professores é frequentemente desvalorizado porquanto se acredita que a Matemática que se ensina nos anos iniciais é simples e consequentemente fácil de ensinar. É uma crença errada pois, apesar de ser elementar, esta Matemática constitui o alicerce de futuras construções matemáticas e contém os rudimentos de muitos conceitos importantes de ramos avançados da disciplina. Assumindo que o conhecimento do professor é fulcral no processo de ensino e aprendizagem, importa determinar que conhecimento(s) matemático é necessário para ensinar. Neste artigo iremos centrar a nossa atenção no conhecimento matemático para ensinar e apresentar alguns resultados de pesquisa que ilustram pontos críticos e dificuldades no conhecimento de (futuros) professores e que apontam pistas para conceptualizar a formação dos professores.
Downloads
Referências
ASKEW, M. Effective teachers of numeracy. London: King's College London, 1997.
BALL, D. L.; THAMES, M. H.; PHELPS, G. Content knowledge for teaching: what makes it special? Journal of Teacher Education, v. 59, n. 5, p. 389-407, 2008. DOI: https://doi.org/10.1177/0022487108324554
BALL, D. L. The mathematical understanding that prospective teachers bring to teacher education. Elementary School Journal, ano 90, p. 449-466, 1990. DOI: https://doi.org/10.1086/461626
BALL, D. L. What mathematical knowledge is needed for teaching mathematics. [S. l.]: Secretary’s Summit on Mathematics, US Department of Education, 2003.
BAUMERT, J. et al. Teachers' mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, v. 47, n. 1, p. 133-180, 2010. DOI: https://doi.org/10.3102/0002831209345157
CONFERENCE BOARD OF THE MATHEMATICAL SCIENCES. The mathematical education of teachers II. Providence RI and Washington DC: American Mathematical Society and Mathematical Association of America, 2012.
CHARALAMBOUS, C. Y. Investigating the knowledge need¬ed for teaching mathematics: an exploratory valida¬tion study focusing on teaching practices. Journal of Teacher Education, v. 67, n. 3, p. 220-237, 2016. DOI: https://doi.org/10.1177/0022487116634168
DAVIS, B.; SIMMT, E. Mathematics-for-teaching: an ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, v. 61, n. 3, p. 293-319, 2006. DOI: https://doi.org/10.1007/s10649-006-2372-4
DE VILLIERS, M. The role and function of a hierarchical classification of the quadrilaterals. For the Learning of Mathematics, v. 14, n. 1, p. 11-18, 1994.
ELMORE, R. F. Bridging the gap between standards and achievement. Washington, DC: Albert Shanker Institute, 2002.
EUROPEAN COMMISSION. Boosting teacher quality: pathways to effective policies.
Luxembourg: Publications Office of the European Union, 2018.
EUROPEAN COMMISSION. Shaping career-long perspectives on teaching. A guide on policies to improve initial teacher education. Luxembourg: Publications Office of the European Union, 2015.
FENNEMA, E.; FRANKE, M. L. Teachers knowledge and its impact. In: GROWS, D. A. (ed.). Handbook of research on mathematics teaching and learning. New York: MacMillan, 1992. p. 147-164.
FONSECA, L. Geometria no Plano. In: PALHARES, P. (ed.). Elementos de Matemática para professores do Ensino Básico. Lisboa: Lidel, 2004. p. 251-302.
GOMES, A. et al. Tarefas em geometria: da sala de aula para a formação de professores. Descrição de um projeto. In: PINTO, H. et al. (ed.). Atas do Seminário de Investigação em Educação Matemática (SIEM). Lisboa: APM, 2012. p. 761-763.
GOMES, A.; RALHA, E. Conceitos Elementares em Matemática: o papel da definição. In: CONGRESSO IBERO-AMERICANO DE EDUCAÇÃO MATEMÁTICA, 5., 2005, Porto. Anais [...] Porto, 2005.
GOMES, A. Um estudo sobre o conhecimento matemático de (futuros) professores de 1.º ciclo. O problema dos conceitos fundamentais em Geometria. 2003. Tese (Doutorado) – Instituto da Criança, Universidade do Minho, Braga, 2004.
HIEBERT, J.; GROUWS, D. The effects of classroom mathematics teaching on students’ learning. In: LESTER, F. (ed.). Handbook of Research on Mathematics Teaching and Learning. NCTM: Information Age Publishing, 2007. p. 371-404.
HILL, H. C.; BALL, D. L. Learning mathematics for teaching: results from California’s mathematics professional development institutes. Journal for Research in Mathematics Education, v. 35, n. 5, p. 330-351, 2004. DOI: https://doi.org/10.2307/30034819
HILL, H. C. et al. Assessing Teachers’ Mathematical Knowledge: What knowledge matters and what evidence counts? In: LESTER, F. (ed.). Second Handbook of Research on Mathematics Teaching and Learning. Charlotte NC: Information Age Publishing, 2007. p. 111-155.
HILL, H. C. et al. Mathematical knowledge for teaching and the mathematical quality of instruction: an exploratory study. Cognition and Instruction, v. 26, n. 4, p. 430-511, 2008. DOI: https://doi.org/10.1080/07370000802177235
HILL, H. C.; ROWAN, B.; BALL, D. L. Effects of teachers' mathematics knowledge for teaching on student achievement. American Education Research Journal, v. 42, n. 2, p. 371-406, 2005. DOI: https://doi.org/10.3102/00028312042002371
HOOVER, M. et al. Making pro¬gress on mathematical knowledge for teaching. The Mathematics Enthusiast, v. 13, n. 1, p. 3-34, 2016. DOI: https://doi.org/10.54870/1551-3440.1363
HOURIGAN, M.; LEAVY, A. M. Preservice primary teachers’ geometric thinking: Is pre-tertiary mathematics education building sufficiently strong foundations? The Teacher Educator, v. 52, n. 4, p. 346-364, 2017. DOI: https://doi.org/10.1080/08878730.2017.1349226
JONES, K.; TZEKAKI, M. Research on the teaching and learning of geometry. In: GUTIÉRREZ, A.; LEDER, G.; BOERO, P. (ed.). The second handbook of research on the psychology of mathematics education: the journey continues. Rotterdam: Sense, 2016. p. 109-149. DOI: https://doi.org/10.1007/978-94-6300-561-6_4
MA, L. Knowing and teaching elementary mathematics: teachers' understanding of fundamental mathematics in China and the US. Mahwash, NJ: Lawrence Erlbaum Associates, Publishers, 1999. DOI: https://doi.org/10.4324/9781410602589
NEWELL, R. The extent to which a primary maths teacher’s success in the classroom is
dependent on subject knowledge. In: SMITH, C. (ed.). Proceedings of the British Society for Research into Learning Mathematics, v. 31, n. 1, p. 103-108, Mar. 2011.
RIBEIRO, C. M. Future primary teachers MKT in Geometry: some examples concerning rectangles. In: GUNNARSDOTTIR, G. H. et al. (ed.). Nordic Conference on Mathematics Education, NORMA 11. Reykjavík: NORME, 2012. p. 533-541.
ROWLAND, T. The knowledge quartet: a framework for analysing and developing mathematics teaching. In: FERNANDES, J. A. et al. (ed.). Atas do XXIV Seminário de Investigação em Educação Matemática. Braga: Centro de Investigação em Educação da Universidade do Minho, 2013. p. 31-47.
SCHMIDT, W. H. et al. Teacher education matters: a study of middle school mathematics teacher preparation in six countries. New York: Teachers College Press. 2011
SHULMAN, L. Those who understand: knowledge growth in teaching. Educational Researcher, v. 15, n. 2, p. 4-14, 1986. DOI: https://doi.org/10.3102/0013189X015002004
SKEMP, R. Relational understanding and instrumental understanding. Mathematics Teaching, ano 77, p. 20-26, 1976.
STEIN, M. K. et al. Implementing standards-based mathematics instruction: a casebook for professional development. New York: Teachers College Press, 2000.
VINNER, S. The role of definitions in the teaching and learning of mathematics. In: TALL, D. (ed.). Advanced mathematical thinking. Dordrecht: Kluwer, 1991. p. 65-81. DOI: https://doi.org/10.1007/0-306-47203-1_5
WINICKI, G.; LEIKIN, R. On equivalent and non-equivalent definitions: part 1. For the Learning of Mathematics, v. 20, n. 1, p. 17-21, 2000.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Alexandra Gomes
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaração de Direito Autoral
Os autores mantêm os direitos autorais e concedem à Revista o direito de primeira publicação, com o trabalho licenciado simultaneamente sob uma Licença Creative Commons – Atribuição – 4.0 Internacional.