Physicochemical attributes and bioactive properties of statice leaves

Authors

DOI:

https://doi.org/10.18593/evid.32555

Keywords:

Limonium sinuatum (L.) Mill., cut flowers, phenolic compounds, antioxidant activity

Abstract

Some ornamental plants have been receiving special attention, not only for their use in landscaping, but also because of their bioactive, aromatic and spicy properties. The objective of this study was to characterize physical and chemical attributes and antioxidant activity in leaves of three cultivars of statice (Limonium sinuatum). The cultivars used were QIS White, QIS Blue Dark, and QIS Yellow. The content of total soluble solids (TSS), total titratable acidity (TTA), TSS/TTA ratio, pH, vitamin C, anthocyanin, flavonoids, total phenolic compounds (TPC), total antioxidant activity (TAA) and the relationship between TPC and flavonoids and TAA were analyzed for each cultivar. The results showed that the leaves of the QIS White cultivar have a higher TSS/TTA ratio, indicating better flavor. The QIS White cultivar also showed higher vitamin C and flavonoid content. The cultivars QIS White and QIS Blue Dark showed higher TPC contents, but there were no differences in TTA and anthocyanin content. The average TAA values were 94.3%, indicating that all cultivars have a high capacity to sequester the DPPH radical. There was a positive relationship between TPC with flavonoids and TAA (R2=0.6168 and 0.8826, respectively). The leaves of statice plants, traditionally used in landscaping and as a cut flower, have potential for use in human food.

Downloads

Download data is not yet available.

References

García-Herrera P, Morales P, Cámara M, Fernández-Ruiz V, Tardío J, Sánchez-Mata MC. Nutritional and phytochemical composition of Mediterranean wild vegetables after culinary treatment. Foods, 2020;9(1761):2-17. Available from: http://dx.doi.org/10.3390/foods9121761 DOI: https://doi.org/10.3390/foods9121761

Senizza B, Zhang L, Rocchetti G, Zengin G, Ak G, Yildiztugay E, et al. Metabolomic profiling and biological properties of six Limonium species: Novel perspectives for nutraceutical purposes. Food Funct. 2021;12:3443-54. Available from: http://dx.doi.org/10.1039/D0FO02968H DOI: https://doi.org/10.1039/D0FO02968H

Souza JVA, Liberato MCTC, Teixeira LDS. From the bush to the table: a bibliographic study on the nutritional potential of non-conventional food plants: Portulaca oleracea L. and Tropaeolum majus L. Braz J Dev. 2021;7(4):40017-40. Available from: http://dx.doi.org/10.34117/bjdv7n4-458 DOI: https://doi.org/10.34117/bjdv7n4-458

Koutroumpa K, Theodoridis S, Warren BH, Jiménez A, Celep F, Doğan M, et al. An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecol Evol. 2018;8:12397-424. Available from: http://dx.doi.org/10.1002/ece3.4553 DOI: https://doi.org/10.1002/ece3.4553

Baysal I, Ekizoglu M, Ertas A, Temiz B, Hagalar HG, Ybanoglu-Ciftci S, et al. Identification of phenolic compounds by LC-MS/MS and evaluation of bioactive properties of two edible halophytes: Limonium effusum and L. sinuatum. J Mol. 2021;26(13):2-18. Available from: http://dx.doi.org/10.3390/molecules26134040 DOI: https://doi.org/10.3390/molecules26134040

Buffon PA, Streck NA, Schwab NT, Uhlmann LO, Tomiozzo RT, Lima EF, et al. A Phenological scale of statice. Ann Appl Biol. 2022:1-13. Available from: http://dx.doi.org/10.1111/aab.12765 DOI: https://doi.org/10.1111/aab.12765

Souid A, Bellani L, Gabriele M, Pucci L, Smaoui A, Abdelly C, et al. Phytochemical and biological activities in Limonium species collected in different biotopes of Tunisia. Chem Biodivers. 2019;16(7). Available from: http://dx.doi.org/10.1002/cbdv.201900216

Hamadou MH, Kerkatou M, Gatto P, Pancher M, Bisio A, Inga A, et al. Apigenin rich-Limonium duriusculum (de Girard) Kuntze promotes apoptosis in HCT116 cancer cells. Nat Prod Res. 2019;35(17):2910-14. Available from: http://dx.doi.org/10.1080/14786419.2019.1672070 DOI: https://doi.org/10.1080/14786419.2019.1672070

Hamadou MH, Kerkatou M, Zucal C, Bisio B, Provenzani A, Inga A, et al. Human and Animal Health Limonium duriusculum (de Girard) Kuntze Exhibits Anti-inflammatory Effect Via NF-KB Pathway Modulation. Braz Arch Biol Technol. 2021;64:e21200179. Available from: http://dx.doi.org/10.1590/1678-4324-2021200179 DOI: https://doi.org/10.1590/1678-4324-2021200179

Canteri MG, Althaus RA, Virgens JSVF, Giglioti EA, Godoy CV. SASM - Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scoft - Knott, Tukey e Duncan. Rev Bras Agrocomput. 2001;1(2):18-24.

Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. 4a ed. São Paulo; 2008.

Amarante CVT, Souza AG, Benincá TDT, Steffens CA, Ciota MN. Physicochemical attributes and functional properties of flowers of Brazilian feijoa genotypes. Pesqui Agropecu Bras. 2019;54(e-00445):1-5. Available from: http://dx.doi.org/10.1590/S1678-3921.pab2019.v54.00445 DOI: https://doi.org/10.1590/s1678-3921.pab2019.v54.00445

Lara-Cortés E, Martím-Belloso O, Osoriodíaz P, Barrera-Necha LL, Sánches-López JÁ, Bautista-Baños S. Actividad antioxidante, composición nutrimental y funcional de flores comestibles de dalia. Rev Chapingo Ser Hortic. 2014;20(1):101-16. Available from: http://dx.doi.org/10.5154/r.rchsh.2013.07.024 DOI: https://doi.org/10.5154/r.rchsh.2013.07.024

Viana MMS, Carlos LA, Silva EC, Pereira SMF, Oliveira DB, Assis MLV. Composição fitoquímica e potencial antioxidante de hortaliças não convencionais. Hortic Bras. 2015;33(4):504-9. Available from: http://dx.doi.org/10.1590/S0102-053620150000400016 DOI: https://doi.org/10.1590/S0102-053620150000400016

Fukalova-Fukalova T, Martinez MDG, Raigon MD. Five undervalued edible species inherent to autumn-winter season: nutritional composition, bioactive constituents and volatiles profile. J Life Environ. 2021;9(e-12488):2-23. Available from: http://dx.doi.org/10.7717/peerj.12488 DOI: https://doi.org/10.7717/peerj.12488

Jardina LL, Cordeiro CAM, Silva MCC, Sanches AG, Araújo Júnior PV. Desempenho produtivo e qualidade de cultivares de rúcula em sistema semi-hidropônico. Rev Agric Neotrop. 2017;4(1):78-82. DOI: https://doi.org/10.32404/rean.v4i1.1399

Barrett DM, Beaulieu JC, Shewfelt R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Crit Rev Food Sci Nutr. 2010;50(5):369-89. Available from: http://dx.doi.org/10.1080/10408391003626322 DOI: https://doi.org/10.1080/10408391003626322

Souid A, Bellani L, Gabriele M, Pucci L, Smaoui A, Abdelly C, et al. Phytochemical and biological activities in Limonium species collected in different biotopes of Tunisia. Chem Biodivers. 2019;16(7). Available from: https://doi.org/10.1002/cbdv.201900216 DOI: https://doi.org/10.1002/cbdv.201900216

Souza ATR, Maynard DC, Almeida AG, Mendonça KAN, Vilela JS, Almeida SG. Nutritional analysis and sensory acceptance test of purslane (Portulaca Oleracea). Braz J Dev. 2019;5(10):17670-80. Available from: http://dx.doi.org/10.34117/bjdv5n10-039 DOI: https://doi.org/10.34117/bjdv5n10-039

Granger M, Eck P. Dietary Vitamin C in Human Health. Adv Food Nutr Res. 2018;83:281-310. Available from: http://dx.doi.org/10.1016/bs.afnr.2017.11.006 DOI: https://doi.org/10.1016/bs.afnr.2017.11.006

Brasil. Ministério da Saúde. Agência nacional de vigilância sanitária (Anvisa). Aprova o regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais. Resolução RDC no 269, de 22 de setembro de 2005. Diário Oficial da União, Poder Executivo. Brasília; 2005.

Mampholo SM, Maboko MM, Soundy P, Sivakumar D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in close dhydroponic system. J Food Qual. 2016;39:805-15. Available from: http://dx.doi.org/10.1111/jfq.12234 DOI: https://doi.org/10.1111/jfq.12234

Dziadek K, Kopeć A, Czaplocki S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur Food Res Technol. 2018;244:1415-26. Available from: http://dx.doi.org/10.1007/s00217-018-3055-y DOI: https://doi.org/10.1007/s00217-018-3055-y

Chena GL, Chena SG, Xiao Y, Fub NL. Antioxidant capacities and total phenolic contents of 30 flowers. Ind Crops Prod. 2018;111:430-45. Available from: http://dx.doi.org/10.1016/j.indcrop.2017.10.051 DOI: https://doi.org/10.1016/j.indcrop.2017.10.051

Karak P. Biological activities of flavonoids: an overview. Int J Pharm Sci Res. 2019;10(4):1567-74. Available from: http://dx.doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74 DOI: https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

Corrêa VG, Tureck C, Locateli G, Peralta RM, Koenhleine A. Estimate of consumption of phenolic compounds by Brazilian population. Rev Nutr. 2015;28(2):185-96. Available from: http://dx.doi.org/10.1590/1415-52732015000200007 DOI: https://doi.org/10.1590/1415-52732015000200007

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai AA. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medic. 2018;5(93):1-16. http://dx.doi.org/10.3390/medicines5030093 DOI: https://doi.org/10.3390/medicines5030093

Souza AG, Jung EA, Benedicto VP, Bosco LC. Bioactive compounds in gladiolus flowers. Rev Bras Hortic Ornam. 2021;27(3):296-303. http://dx.doi.org/10.1590/2447-536X.v27i3.2310 DOI: https://doi.org/10.1590/2447-536x.v27i3.2310

More SB, Gogate PR, Waghmare JS. Bioactives from pomegranate peel and moringa leaves as natural antioxidants for stability of edible oil blends. Braz J Chem Eng. 2022;39:527-38. http://dx.doi.org/10.1007/s43153-021-00150-1 DOI: https://doi.org/10.1007/s43153-021-00150-1

Downloads

Published

05/08/2023

How to Cite

Souza, A. G. de, Jung, E. A., Benedicto, V. P., Bosco, L. C., Münch, D., & Wasilkosky, G. (2023). Physicochemical attributes and bioactive properties of statice leaves. Evidence, 23(1), 23–32. https://doi.org/10.18593/evid.32555

Most read articles by the same author(s)