REMOÇÃO DE COBRE POR BIOMASSA DE ENTEROCOCCUS FAECALIS E SALMONELLA ENTERICA SOROVAR ENTERITIDIS EM SOLUÇÃO AQUOSA
DOI:
https://doi.org/10.18593/eba.v15i2.8528Palavras-chave:
Bacteria, Bioacumulation, Heavy metalResumo
Em razão dos poucos estudos a respeito do uso de células vivas na remoção de metais, com esta pesquisa visou-se avaliar a remoção de cobre por Enterococcus faecalis ATCC 51299 e por Salmonella enterica sorovar Enteritidis CCT 4475 em crescimento contínuo. Os resultados obtidos demonstraram efeito significativo (P<0,05) para os fatores espécie e concentrações de cobre em decorrência do crescimento, remoção total e acúmulo intracelular de cobre. As distintas concentrações de cobre limitaram circunstancialmente o crescimento das biomassas, entretanto, o metal nas concentrações utilizadas não foi inibitório, o que sugere o desenvolvimento de adaptação fisiológica ao metal cobre em concentrações de 7,72 mg L-1 e 15,20 mg L-1. Salmonella enterica sorovar Enteritidis CCT 4475 apresentou maior percentual de remoção total e acúmulo intracelular de cobre quando comparada à Enterococcus faecalis ATCC 51299. Entretanto, ambas as cepas foram capazes de remover cobre em meio de cultivo. Esses resultados sugerem que as cepas em estudo exibem potencial para a exploração na remoção de cobre.
Palavras-chave: Bactéria. Bioacumulação. Metal pesado.
Downloads
Referências
REFERÊNCIAS BIBLIOGRÁFICAS
Lindino CA, Gonçalves Júnior AC, Schreiner GGO, Schreiner JS, De Farina L. O. Determinação de metais em corantes alimentícios artificiais. Acta Scientiarum. Technology 2008; 30: 93-98.
Marengonil NG, Possamail M, Gonçalves Júnior AC, Oliveira AAMA. Performance e retenção de metais pesados em três linhagens de juvenis de tilápia-do-Nilo em hapas. Acta Scientiarum. Animal Sciences 2008; 30: 351-358.
Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresource Technology 2012; 126: 233-237.
Gonçalves Junior AC, Selzlein C, Nacke H. Uso de biomassa seca de aguapé (Eichornia crassipes) visando à remoção de metais pesados de soluções contaminadas. Acta Scientiarum. Technology 2009; 31: 103-108.
Bruins M, Kapil S, Oehme F. Microbial resistance to metal in the environment. Ecotoxicology and Environmental Safety 2000; 45: 198-207.
Yilmaz M, Tay T, Kivanc M, Turk H. Removal of copper(ii) ions from aqueous solution by a lactic acid bacterium. Brazilian Journal of Chemical Engineering 2010; 27: 309-314.
Pinto GAS, Leite SGF, Da Cunha CD, Mesquita LMS. Aplicação de Microorganismos no Tratamento de Resíduos: a remoção de metais pesados de efluentes líquidos. Revista Científica e Cultural da Universidade Estácio de Sá. Cap. 09, 2002.
Barros AJM, Prasad S, Leite VD, Souza AG. The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge. Brazilian Journal of Chemical Engineering 2006; 23: 153-162.
Modenes NA, Espinoza-Quiñones FR, Lavarda FL, Colombo A, Borba CB, Leichtweis WA, Mora ND. Remoção dos metais pesados Cd(II), Cu(II) e Zn(II) pelo processo de biossorção utilizando a macrófita Eicchornia crassipes. Revista Escola Minas [online] 2013; 66: 355-362.
Tunali S, Kiran I, Akar T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Engineering 2005; 18: 681-689.
Nies DH. Microbial heavy-metal resistance. Applied Microbiology Biotechnology 1999; 51: 730-750.
Wang L, Chua H, Zhou PK, Wong SN, Sin SN, Lo WL, Yu PH. Role of cell surface components on Cu 2+ adsorption by Pseudomonas putida isolated from electroplating effluent. Water Research 2003; 37: 561-568.
Ellis RJ, Morgan P, Weightman AJ, Fry JC. Cultivation dependant and independent approache for determining bacterial diversity in heavy-metal contaminated soil. Applied Environmental Microbiology 2003; 69: 3223-3230.
Gadd GM. Microbial influence on metal mobility and application for bioremediation. Geoderma 2004; 122:109-119.
Malik A. Metal bioremediation through growing cells. Environment International 2004; 30: 261-278.
UNIVERSIDADE FEDERAL DE VIÇOSA-UFV. SAEG - Sistema de análises estatísticas e genéticas. Versão 9,1. Viçosa, MG. 142p. (manual do usuário). 2007.
Sani RK, Peyton BM, Brown LT. Copper-Induced Inhibition of Growth of Desulfovibrio desulfuricans G20: Assessment of Its Toxicity and Correlation with Those of Zinc and Lead. Applied Environmetal Microbiology 2001; 67: 4765–4772.
Stohs D, Onions AHS. Oxidative mechanisms in the toxicity of heavy metals. Free Radicals Biology and Medicine 1995; 18: 321-336.
Wang CL, Michels PC, Dawson SC, Kitisakkul S, Baross JA, Keasling JD, Clark DS. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Applied and Environmental Microbiology 1997; 63: 4075-4078.
Gikas P, Sengör SS, Ginn T, Moberly J, Peyton B. The effects of heavy metals and temperature on microbial growth and lag. Global Nest Journal 2009; 11: 325-332.
Gadd GM. Interactions of fungi with toxic metals. New Phytology 1993; 124: 25-60.
Gomes NCM, Mendonça-Hagler LCS, Savaidis I. Metal Biorremediation by Microorganisms. Revista de Microbiologia 1998; 29: 85-92.
Chojnacka K. Biosorption and bioaccumulation - the prospects for practical applications. Environment International 2010; 36: 299-307.
Flout R, Estephane G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. Juournal of Environmental Management 2012; 111:06-114.
Donmez G, Aksu Z. Bioaccumulation of Cooper (II) and Nickel (II) by the non-adapted and adapted growing Candida sp. Water Research 2001; 35: 1425 –1434.
Souza JI de, Schoenlein-Crusius IH, Pires-Zottarelli CLA, Schoenlin NC. Biossorção de cobre, manganês e cádmio por biomassas de Saprolegnia subterranea (Dissmann) R.L. Seym. e Pythium torulosum Coker & P. Patt. (Oomycetes). Acta Botanica. Brasilica. [online] 2008; 22: 217-223.
Costa ACA, Duta FP. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis. Brazilian Journal Microbiology 2001; 32: 1-5.
Van Hullebusch ED, Zandvoort MH, Lens PNL. Metal immobilization by biofilms: Mechanisms and analytical tools. Reviews in Environmental Science and Biotechnology 2003; 2: 9-33.
Voss M, Thomas RWSP. Sorção de cobre e manganês por bactérias rizosféricas do trigo. Ciência Rural [online] 2001; 31: 947-951.
Anand P, Isar J, Saran S, Saxena RK. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology 2006; 97: 1018-1025.
Ahluwalia, SS., Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology 2007; 98: 2243-2257. Doi: 10.1016/j.biortech.2005.12.006
Godlewska-Zylkiewicz B. Microorganisms in inorganic chemical analysis. Analytical and Bioanalytical Chemistry 2006; 384: 114-123.
Harwood VJ, Gordon AS. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus. Applied and Environmental Microbiology 1994; 60: 1749-1753.
Alvarez S, Jerez CA. Copper Ions Stimulate Polyphosphate Degradation and Phosphate efflux in Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology 2004; 70: 5177-5182.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Declaração de Direito Autoral
Os autores mantêm os direitos autorais e concedem à Revista o direito de primeira publicação, com o trabalho licenciado simultaneamente sob uma Licença Creative Commons – Atribuição – Não Comercial 4.0 Internacional.