Presença e perfil de susceptibilidade antimicrobiana de salmonella spp. isoladas de pisciculturas

Autores

  • Renata Pires de Araújo
  • Fabiana Gomes da Silva Dantas
  • Adriana Araújo de Almeida-Apolonio https://orcid.org/0000-0002-3836-8519
  • Monyque Palagano da Rocha
  • Bruno Amaral Crispim
  • Alexeia Barufatti
  • Dalia dos Prazeres Rodrigues
  • João Víctor de Andrade dos Santos
  • Kelly Mari Pires de Oliveira

DOI:

https://doi.org/10.18593/evid.33034

Palavras-chave:

Aquicultura, Sorotipagem, Integrons, Resistência a antibióticos, Saúde Pública

Resumo

Salmonella spp. são importantes patógenos de origem alimentar que estão frequentemente associados a surtos infecciosos causados pelo consumo de alimentos contaminados. Embora esses microrganismos estejam amplamente distribuídos em diversas cadeias produtivas animais, existem poucos registros de sua ocorrência na aquicultura. Este estudo teve como objetivo avaliar a presença e resistência antimicrobiana de Salmonella spp. isoladas de pisciculturas. Amostras foram coletadas de três pisciculturas, abrangendo água, peixe e biofilme epilítico. Os isolados de Salmonella foram identificados por PCR, e a sorotipagem foi realizada pelo método de aglutinação em lâmina, de acordo com o sistema Kaufman-White. A suscetibilidade aos agentes antimicrobianos foi avaliada utilizando o método de difusão em disco de Kirby e Bauer. A presença de integrons das classes 1 e 2 foi determinada por PCR. Noventa amostras foram examinadas, destas, 13 (14,44%) foram positivas para S. enterica, das quais 5 cepas foram isoladas de água de lagoa, 3 cepas de peixes e 5 cepas de biofilme epilítico. Entre as amostras foram identificados os sorotipos S. Minnesota, S. Panamá e S. Anatum. As taxas de resistência aos antimicrobianos foram mais elevadas para sulfonamidas (92,30%), trimetoprima (84,61%), tetraciclina (46,15%) e estreptomicina (46,15%). A resistência múltipla a antibióticos foi confirmada em 84,61% dos isolados, com 100% deles apresentando integron classe 1 e 7,69% integron classe 2. Este estudo evidenciou uma alta prevalência de bactérias multirresistentes em pisciculturas, o que reforça as preocupações relacionadas à saúde pública devido ao uso indiscriminado de antibióticos e o risco associado aos alimentos provenientes de peixes de criadouros de água doce. Diante desses resultados é evidente a necessidade de novas pesquisas voltadas para estratégias de controle e prevenção de Salmonella spp. na aquicultura, bem como de maior regulação nas cadeias produtivas de peixes.

Downloads

Não há dados estatísticos.

Referências

Amagliani, G., Brandi, G., & Schiavano, G. F. (2012). Incidence and role of Salmonella in seafood safety. Food Research International, 45(2), 780-788. https://doi.org/10.1016/j.foodres.2011.06.022

Argüello, H., Guerra, B., Rodríguez, I., Rubio, P., & Carvajal, A. (2018). Characterization of Antimicrobial Resistance Determinants and Class 1 and Class 2 Integrons in Salmonella enterica spp., Multidrug-Resistant Isolates from Pigs. Genes, 9(5). https://doi.org/10.3390/genes9050256

Brazil. (2001, February 1). Resolução no 12, de 02 de janeiro de 2001. Dispõe sobre os princípios gerais para o estabelecimento de critérios e padrões microbiológicos para alimentos. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2001/res0012_02_01_2001.html

Budiati, T., Rusul, G., Wan-Abdullah, W. N., Chuah, L.-O., Ahmad, R., & Thong, K. L. (2016). Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia. Journal of Food Protection, 79(4), 659-665. https://doi.org/10.4315/0362-028X.JFP-15-372

Byun, K.-H., Na, K. W., Ashrafudoulla, M., Choi, M. W., Han, S. H., Kang, I., Park, S. H., & Ha, S.-D. (2022). Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology, 102, 103906. https://doi.org/10.1016/j.fm.2021.103906

Cabello, F. C., & Godfrey, H. P. (2016). Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environmental Microbiology, 18(2), 311-313. https://doi.org/10.1111/1462-2920.13247

Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134

Carneiro, M. R. P., Berto, L. H., Oliveira, J. G. S., Santos, A. F. M., Jain, S., Rodrigues, D. P., & Fracalanzza, S. E. L. (2019). Salmonella Panama: Genetic Diversity of the Isolates Collected from Human and Non-human Sources. Revista Da Sociedade Brasileira de Medicina Tropical, 52, e20180285. https://doi.org/10.1590/0037-8682-0285-2018

Centers for Disease Control and Prevention [CDC]. (2013). An atlas of Salmonella in the United States, 1968-2011: Laboratory-based Enteric Disease Surveillance. US Department of Health and Human Services. https://www.cdc.gov/salmonella/pdf/salmonella-atlas-508c.pdf

Clinical and Laboratory Standards Institute [CLSI]. (2019). Clinical and Laboratory Standards Institute. CLSI performance standards for antimicrobial susceptibility testing (29th suppl.). CLSI.

Corrêa, F. E. L., Dantas, F. G. S., Grisolia, A. B., Crispim, B. A., & Oliveira, K. M. P. (2014). Identification of class 1 and 2 integrons from clinical and environmental Salmonella isolates. Journal of Infection in Developing Countries, 8(12), 1518-1524. https://doi.org/10.3855/jidc.4734

Cummings, K. J., Warnick, L. D., Davis, M. A., Eckmann, K., Gröhn, Y. T., Hoelzer, K., MacDonald, K., Root, T. P., Siler, J. D., McGuire, S. M., Wiedmann, M., Wright, E. M., Zansky, S. M., & Besser, T. E. (2012). Farm Animal Contact as Risk Factor for Transmission of Bovine-associated Salmonella Subtypes. Emerging Infectious Diseases, 18(12), 1929-1936. https://doi.org/10.3201/eid1812.110831

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: Class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14, 45. https://doi.org/10.1186/s12941-015-0100-6

Dib, A. L., Agabou, A., Chahed, A., Kurekci, C., Moreno, E., Espigares, M., & Espigares, E. (2018). Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control, 88, 54-60. https://doi.org/10.1016/j.foodcont.2018.01.005

Eng, S.-K., Pusparajah, P., Ab Mutalib, N.-S., Ser, H.-L., Chan, K.-G., & Lee, L.-H. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284-293. https://doi.org/10.1080/21553769.2015.1051243

European Food Safety Authority [EFSA]. (2010). The Community Summary Report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in the European Union in 2008. EFSA Journal, 8(1), 1496. https://doi.org/10.2903/j.efsa.2010.1496

European Medicines Agency [EMA]. (2015). European Surveillance of Veterinary Antimicrobial Consumption. Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2013. (EMA/387934/2015). https://www.ema.europa.eu/en/documents/report/fifth-esvac-report-sales-veterinary-antimicrobial-agents-26-european-union/european-economic-area-countries-2013_en.pdf

Evangelopoulou, G., Kritas, S., Christodoulopoulos, G., & Burriel, A. R. (2015). The commercial impact of pig Salmonella spp. Infections in border-free markets during an economic recession. Veterinary World, 8(3), 257-272. https://doi.org/10.14202/vetworld.2015.257-272

Fernandes, D. V. G. S., Carvalho, R. C. T., Castro, V. S., Cunha-Neto, A., Muller, B., Carvalho, F. T., Prazeres Rodrigues, D., Vieira, B. S., & Souza Figueiredo, E. E. (2021). Salmonella in the processing line of farmed Tambatinga (Colossoma macropomum x Piaractus brachypomus) in Mato Grosso, Brazil: Serotypes of occurrence and antimicrobial profile. Tropical Animal Health and Production, 53(1), 146. https://doi.org/10.1007/s11250-021-02584-8

Fernandes, D. V. G. S., Castro, V. S., Cunha Neto, A., & Figueiredo, E. E. S. (2018). Salmonella spp. in the fish production chain: A review. Ciência Rural, 48, e20180141. https://doi.org/10.1590/0103-8478cr20180141

Ferrari, R. G., Rosario, D. K. A., Cunha-Neto, A., Mano, S. B., Figueiredo, E. E. S., & Conte-Junior, C. A. (2019). Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. Applied and Environmental Microbiology, 85(14), e00591-19. https://doi.org/10.1128/AEM.00591-19

Food and Agriculture Organization [FAO] (Ed.). (2010). Report of the FAO Expert Workshop on the Application of Biosecurity Measures to Control Salmonella Contamination in Sustainable Aquaculture: Mangalore, India, 19 - 21 January 2010. Food And Agriculture Organization of The United Nations.

Furuya, W. M., & Furuya, V. R. B. (2010). Nutritional innovations on amino acids supplementation in Nile tilapia diets. Revista Brasileira de Zootecnia, 39, 88-94. https://doi.org/10.1590/S1516-35982010001300010

Gómez-Aldapa, C. A., Gutiérrez-Alcántara, E. J., Torres-Vitela, M. R., Rangel-Vargas, E., Villarruel-López, A., & Castro-Rosas, J. (2017). Prevalence and behavior of multidrug-resistant Salmonella strains on raw whole and cut nopalitos (Opuntia ficus-indica L.) and on nopalitos salads. Journal of the Science of Food and Agriculture, 97(12), 4117-4123. https://doi.org/10.1002/jsfa.8279

Hassena, A. B., Haendiges, J., Zormati, S., Guermazi, S., Gdoura, R., Gonzalez-Escalona, N., & Siala, M. (2021). Virulence and resistance genes profiles and clonal relationships of non-typhoidal food-borne Salmonella strains isolated in Tunisia by whole genome sequencing. International Journal of Food Microbiology, 337, 108941. https://doi.org/10.1016/j.ijfoodmicro.2020.108941

Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 49(8), 1248-1253. https://doi.org/10.1086/605667

International Standard Organization [ISO]. (2007). ISO 6579:2002/amd.1:2007(E): Microbiology – General guidance for the detection of Salmonella.

International Standard Organization [ISO]. (2015). ISO 17604:2015 (E) Microbiology of the food chain – Carcass sampling for microbiological analysis.

Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., Pinna, E., Nair, S., Fields, P. I., & Weill, F.-X. (2014). Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Research in Microbiology, 165(7), 526-530. https://doi.org/10.1016/j.resmic.2014.07.004

Iwamoto, M., Ayers, T., Mahon, B. E., & Swerdlow, D. L. (2010). Epidemiology of seafood-associated infections in the United States. Clinical Microbiology Reviews, 23(2), 399–411. https://doi.org/10.1128/CMR.00059-09

Jajere, S. M. (2019). A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World, 12(4), 504-521. https://doi.org/10.14202/vetworld.2019.504-521

Jarlier, V., Nicolas, M. H., Fournier, G., & Philippon, A. (1988). Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases, 10(4), 867-878. https://doi.org/10.1093/clinids/10.4.867

Kaushik, M., Kumar, S., Kapoor, R. K., Virdi, J. S., & Gulati, P. (2018). Integrons in Enterobacteriaceae: Diversity, distribution and epidemiology. International Journal of Antimicrobial Agents, 51(2), 167-176. https://doi.org/10.1016/j.ijantimicag.2017.10.004

Kawsar, M. A., Alam, M. T., Pandit, D., Rahman, M. M., Mia, M., Talukdar, A., & Sumon, T. A. (2022). Status of disease prevalence, drugs and antibiotics usage in pond-based aquaculture at Narsingdi district, Bangladesh: A major public health concern and strategic appraisal for mitigation. Heliyon, 8(3), e09060. https://doi.org/10.1016/j.heliyon.2022.e09060

Kurtz, J. R., Goggins, J. A., & McLachlan, J. B. (2017). Salmonella infection: Interplay between the bacteria and host immune system. Immunology Letters, 190, 42-50. https://doi.org/10.1016/j.imlet.2017.07.006

Leal, C. A. G., Oliveira, T. F., & Figueiredo, H. C. P. (2017). Uso de antibacterianos na piscicultura: Erros, acertos e risco—Parte 2. Panorama Da Aquicultura, 27(162), 24. https://panoramadaaquicultura.com.br/antibacterianos-na-piscicultura-erros-acertos-e-riscos-parte-2-2/

Lintzmaia, D. J. H., Rebelatto, I. S., Santos, A. R., Costa, S. B. D., Ritter, D. O., & Lanzarin, M. (2021). Bactérias emergentes na qualidade nutricional do pescado / Emerging bacteria in the nutritional quality of fish. Brazilian Journal of Development, 7(10), 95657-95662. https://doi.org/10.34117/bjdv7n10-063

Malek, M. M., Amer, F. A., Allam, A. A., El-Sokkary, R. H., Gheith, T., & Arafa, M. A. (2015). Occurrence of classes I and II integrons in Enterobacteriaceae collected from Zagazig University Hospitals, Egypt. Frontiers in Microbiology, 6, 601. https://doi.org/10.3389/fmicb.2015.00601

Martins, A. F. M., Pinheiro, T. L., Imperatori, A., Freire, S. M., Sá-Freire, L., Moreira, B. M., & Bonelli, R. R. (2019). Plesiomonas shigelloides: A notable carrier of acquired antimicrobial resistance in small aquaculture farms. Aquaculture, 500, 514-520. https://doi.org/10.1016/j.aquaculture.2018.10.040

Mechesso, A. F., Moon, D. C., Kim, S.-J., Song, H.-J., Kang, H. Y., Na, S. H., Choi, J.-H., Kim, H.-Y., Yoon, S.-S., & Lim, S.-K. (2020). Nationwide surveillance on serotype distribution and antimicrobial resistance profiles of non-typhoidal Salmonella serovars isolated from food-producing animals in South Korea. International Journal of Food Microbiology, 335, 108893. https://doi.org/10.1016/j.ijfoodmicro.2020.108893

Michael, G. B., & Schwarz, S. (2016). Antimicrobial resistance in zoonotic nontyphoidal Salmonella: An alarming trend? Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(12), 968-974. https://doi.org/10.1016/j.cmi.2016.07.033

Miranda, A. L., Cordeiro, S. M., Reis, J. N., Cardoso, L. G., & Guimarães, A. G. (2017). Phenotypic and genotypic characterization of Salmonella spp. Isolated from foods and clinical samples in Brazil. Anais Da Academia Brasileira de Ciências, 89, 1143-1153. https://doi.org/10.1590/0001-3765201720160449

Moura, Q., Fernandes, M. R., Cerdeira, L., Ienne, S., Souza, T. A., Negrão, F. J., & Lincopan, N. (2017). Draft genome sequence of a multidrug-resistant CMY-2-producing Salmonella enterica subsp. Enterica serovar Minnesota ST3088 isolated from chicken meat. Journal of Global Antimicrobial Resistance, 8, 67-69. https://doi.org/10.1016/j.jgar.2016.10.011

Mthembu, T. P., Zishiri, O. T., & El Zowalaty, M. E. (2019). Detection and Molecular Identification of Salmonella Virulence Genes in Livestock Production Systems in South Africa. Pathogens (Basel, Switzerland), 8(3), 124. https://doi.org/10.3390/pathogens8030124

Pulford, C. V., Perez-Sepulveda, B. M., Rodwell, E. V., Weill, F.-X., Baker, K. S., & Hinton, J. C. D. (2019). Salmonella enterica Serovar Panama, an Understudied Serovar Responsible for Extraintestinal Salmonellosis Worldwide. Infection and Immunity, 87(9), e00273-19. https://doi.org/10.1128/IAI.00273-19

Santos, R. R., Xavier, R. G. C., Oliveira, T. F., Leite, R. C., Figueiredo, H. C. P., & Leal, C. A. G. (2019). Occurrence, genetic diversity, and control of Salmonella enterica in native Brazilian farmed fish. Aquaculture, 501, 304-312. https://doi.org/10.1016/j.aquaculture.2018.11.034

Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215-1226. https://doi.org/10.1016/j.envint.2008.04.009

Serrano, P. (2005). Responsible use of antibiotics in aquaculture. https://api.semanticscholar.org/CorpusID:85792575

Weinberger, M., & Keller, N. (2005). Recent trends in the epidemiology of non-typhoid Salmonella and antimicrobial resistance: The Israeli experience and worldwide review. Current Opinion in Infectious Diseases, 18(6), 513-521. https://doi.org/10.1097/01.qco.0000186851.33844.b2

Xu, Z., Wang, M., Zhou, C., Gu, G., Liang, J., Hou, X., Wang, M., & Wei, P. (2020). Prevalence and antimicrobial resistance of retail-meat-borne Salmonella in southern China during the years 2009-2016: The diversity of contamination and the resistance evolution of multidrug-resistant isolates. International Journal of Food Microbiology, 333, 108790. https://doi.org/10.1016/j.ijfoodmicro.2020.108790

Zhang, J., Yang, X., Kuang, D., Shi, X., Xiao, W., Zhang, J., Gu, Z., Xu, X., & Meng, J. (2015). Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products. International Journal of Food Microbiology, 210, 47-–52. https://doi.org/10.1016/j.ijfoodmicro.2015.04.019

Publicado

08-07-2024

Como Citar

Araújo, R. P. de, Dantas, F. G. da S., de Almeida-Apolonio, A. A. de, da Rocha, M. P. da, Crispim, B. A., Barufatti, A., Rodrigues, D. dos P., dos Santos, J. V. de A. dos, & de Oliveira, K. M. P. de. (2024). Presença e perfil de susceptibilidade antimicrobiana de salmonella spp. isoladas de pisciculturas. Evidência, 24, e33034. https://doi.org/10.18593/evid.33034

Edição

Seção

Biociências

Artigos mais lidos pelo mesmo(s) autor(es)