Efeito antimicrobiano e inibição da formação de biofilme por ácidos fenólicos em isolados de Klebsiella pneumoniae multirresistentes em um Hospital Público de Pernambuco, Brasil
DOI:
https://doi.org/10.18593/evid.34023Palavras-chave:
Ação antimicrobiana, Biofilme, Compostos Fenólicos, Enterobactérias, Klebsiella pneumoniaeResumo
Klebsiella pneumoniae é considerada uma espécie de patógeno oportunista relacionada a diversos casos de infecções associadas, tanto à assistência à saúde quanto adquiridas na comunidade, mundialmente e principalmente no Brasil. Inúmeros estudos têm demonstrado que metabólitos secundários, isolados têm, como os ácidos fenólicos, o potencial de atuar contra este problema. Este estudo teve como objetivo investigar o potencial inibitório do crescimento e formação de biofilme associados aos ácidos fenólicos em isolados clínicos de K. pneumoniae Multidroga Resistente e Extensivamente droga resistente (MDR/XDR-KP). Foram utilizados quatro isolados clínicos provenientes de um hospital público de Recife, Pernambuco, Brasil, e uma cepa padrão sensível foram utilizados. A identificação inicial das amostras foi feita através dos equipamentos de automação VITEK®2 e BD-PhoenixTM 100, bem como a caracterização do perfil de resistência. Posteriormente as amostras foram confirmadas pela técnica de MALDI-TOF/MS. E para a avaliação da capacidade de formação de biofilme foi empregado o método do Cristal Violeta. Para avaliação das atividades antimicrobianas e antiformação de biofilme foram utilizados 4 ácidos fenólicos (gálico, trans-ferúlico, cafeico e 4-hidroxibenzóico). Os isolados tiveram sua identidade confirmada para espécie K. pneumoniae com MALDI-TOF/MS score variando entre 2.459-2.083. As amostras apresentaram perfis de resistência tanto MDR quanto XDR, e formadores de biofilme; porém com intensidades diferentes. Dentre todos os compostos testados, os ácidos cafeico e trans-ferúlico foram mais eficazes, com valores de inibição de crescimento e biofilme de 70-85% e 70-90% utilizando a concentração de 2 mg/mL, respetivamente. Diante dos resultados observou-se que os ácidos fenólicos, apresentaram grande potencial de impacto tanto no crescimento bacteriano quanto na capacidade de formação de biofilme dos isolados clínicos MDR/XDR-KP. Assim, leva-nos a reconhecer o uso de ácidos fenólicos como uma possível alternativa no combate a infecções causadas por espécies bacterianas MDRs e XDRs e formadoras de biofilme.
Downloads
Referências
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant infections: Adhesion, biofilm formation and immune evasion. Nature Reviews. Microbiology, 16(7), 397-409. https://doi.org/10.1038/s41579-018-0019-y
Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella pneumoniae: Challenges for treatment, prevention and infection control. Expert Review of Anti-Infective Therapy, 16(10), 749-761. https://doi.org/10.1080/14787210.2018.1522249
Cadavid, E., Robledo, S. M., Quiñones, W., & Echeverri, F. (2018). Induction of biofilm formation in Klebsiella pneumoniae ATCC 13884 by several drugs: The possible role of quorum sensing modulation. Antibiotics (Basel, Switzerland), 7(4), 103. https://doi.org/10.3390/antibiotics7040103
Chen, T., Dong, G., Zhang, S., Zhang, X., Zhao, Y., Cao, J., Zhou, T., & Wu, Q. (2020). Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiology, 20(1), Article 1. https://doi.org/10.1186/s12866-020-01727-5
Conci Campos, C., Franco Roriz, N., Nogueira Espínola, C., Aguilar Lopes, F., Tieppo, C., Freitas Tetila, A., Volpe Chaves, C. E., Alexandrino de Oliveira, P., & Rodrigues Chang, M. (2017). KPC: An important mechanism of resistance in K. pneumoniae isolates from intensive care units in the Midwest region of Brazil. Journal of Infection in Developing Countries, 11(8), 646-651. https://doi.org/10.3855/jidc.8920
Cristea, O. M., Avrămescu, C. S., Bălășoiu, M., Popescu, F. D., Popescu, F., & Amzoiu, M. O. (2017). Urinary tract infection with klebsiella pneumoniae in patients with chronic kidney disease. Current Health Sciences Journal, 43(2), 137-148. https://doi.org/10.12865/CHSJ.43.02.06
Di Domenico, E. G., Cavallo, I., Sivori, F., Marchesi, F., Prignano, G., Pimpinelli, F., Sperduti, I., Pelagalli, L., Di Salvo, F., Celesti, I., Paluzzi, S., Pronesti, C., Koudriavtseva, T., Ascenzioni, F., Toma, L., De Luca, A., Mengarelli, A., & Ensoli, F. (2020). Biofilm production by carbapenem-resistant Klebsiella pneumoniae significantly increases the risk of death in oncological patients. Frontiers in Cellular and Infection Microbiology, 10, 561741. https://doi.org/10.3389/fcimb.2020.561741
Eucast. (2018, December 23). Eucast Breakpoints v 9.0 (2019). https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=299&cHash=c0a2b312e42eb8e9bd88c4e1d1cd466c
Ferreira, R. L., da Silva, B. C. M., Rezende, G. S., Nakamura-Silva, R., Pitondo-Silva, A., Campanini, E. B., Brito, M. C. A., da Silva, E. M. L., Freire, C. C. de M., da Cunha, A. F., & Pranchevicius, M.-C. da S. (2018). High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in Microbiology, 9, 3198. https://doi.org/10.3389/fmicb.2018.03198
Flores, C., Romão, C. M. C. P. A., Bianco, K., Miranda, C. C. de, Breves, A., Souza, A. P. S., Santos, R. M. R., Fonseca, B. O., Filippis, I. de, & Clementino, M. M. (2016). Detection of antimicrobial resistance genes in beta-lactamase- and carbapenemase-producing Klebsiella pneumoniae by patient surveillance cultures at an intensive care unit in Rio de Janeiro, Brazil. Jornal Brasileiro de Patologia e Medicina Laboratorial, 52, 284-292. https://doi.org/10.5935/1676-2444.20160049
Floyd, K. A., Eberly, A. R., & Hadjifrangiskou, M. (2017). Adhesion of bacteria to surfaces and biofilm formation on medical devices. In Biofilms and Implantable Medical Devices (pp. 47-95). Elsevier. https://doi.org/10.1016/B978-0-08-100382-4.00003-4
Freire, F. E. C., Neto, J. H. A., Silva, D. P. da, Gonçalves, R. C., Menezes, A. C. S., & Naves, P. L. F. (2018). Inhibitory activity of 3,4,5-tris(acetyloxy)benzoic acid against bacterial biofilms formation. Revista Virtual de Química, 10(4), 767-777. https://doi.org/10.21577/1984-6835.20180056
Gato, E., Rosalowska, A., Martínez-Guitián, M., Lores, M., Bou, G., & Pérez, A. (2020). Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 132, 110885. https://doi.org/10.1016/j.biopha.2020.110885
Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention – A journey to break the wall: A review. Archives of Microbiology, 198(1), 1-15. https://doi.org/10.1007/s00203-015-1148-6
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA, 81(1), 7-11. https://doi.org/10.1016/j.jcma.2017.07.012
Khalil, M. A. F., Hager, R., Abd-El Reheem, F., Mahmoud, E. E., Samir, T., Moawad, S. S., & Hefzy, E. M. (2019). A study of the virulence traits of carbapenem-resistant Klebsiella pneumoniae isolates in a Galleria mellonella model. Microbial Drug Resistance (Larchmont, N.Y.), 25(7), 1063-1071. https://doi.org/10.1089/mdr.2018.0270
Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12), e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
Kot, B., Kwiatek, K., Janiuk, J., Witeska, M., & Pękala-Safińska, A. (2019). Antibacterial activity of commercial phytochemicals against Aeromonas species isolated from fish. Pathogens, 8(3), 142. https://doi.org/10.3390/pathogens8030142
Kot, B., Wicha, J., Piechota, M., Wolska, K., & Gruzewska, A. (2015). Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45(4), 919-924. https://doi.org/10.3906/sag-1406-112
Ku, Y.-H., Chuang, Y.-C., Chen, C.-C., Lee, M.-F., Yang, Y.-C., Tang, H.-J., & Yu, W.-L. (2017). Klebsiella pneumoniae isolates from meningitis: Epidemiology, virulence and antibiotic resistance. Scientific Reports, 7(1), 6634. https://doi.org/10.1038/s41598-017-06878-6
Li, G., Zhao, S., Wang, S., Sun, Y., Zhou, Y., & Pan, X. (2019). A 7-year surveillance of the drug resistance in Klebsiella pneumoniae from a primary health care center. Annals of Clinical Microbiology and Antimicrobials, 18, 34. https://doi.org/10.1186/s12941-019-0335-8
Li, Y., Shan, M., Zhu, Z., Mao, X., Yan, M., Chen, Y., Zhu, Q., Li, H., & Gu, B. (2019). Application of MALDI-TOF MS to rapid identification of anaerobic bacteria. BMC Infectious Diseases, 19(1), 941. https://doi.org/10.1186/s12879-019-4584-0
Lin, T.-H., Wu, C.-C., Tseng, C.-Y., Fang, J.-H., & Lin, C.-T. (2022). Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. Journal of Microbiology, Immunology, and Infection = Wei Mian Yu Gan Ran Za Zhi, 55(6 Pt 2), 1255-1262. https://doi.org/10.1016/j.jmii.2021.07.002
Liu, F., Sun, Z., Wang, F., Liu, Y., Zhu, Y., Du, L., Wang, W., & Xu, W. (2020). Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. F Micro [Internet]. 86, 103344. https://doi.org/10.1016/j.fm.2019.103344
Lu, L., Hu, W., Tian, Z., Yuan, D., Yi, G., Zhou, Y., Cheng, Q., Zhu, J., & Li, M. (2019). Developing natural products as potential anti-biofilm agents. Chinese Medicine, 14(1), Article 1. https://doi.org/10.1186/s13020-019-0232-2
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mani, M., Okla, M. K., Selvaraj, S., Ram Kumar, A., Kumaresan, S., Muthukumaran, A., Kaviyarasu, K., El-Tayeb, M. A., Elbadawi, Y. B., Almaary, K. S., Ahmed Almunqedhi, B. M., & Elshikh, M. S. (2021). A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7cell line. Environmental Research, 198, 111199. https://doi.org/10.1016/j.envres.2021.111199
Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, 4. https://doi.org/10.3389/fcimb.2018.00004
Muñoz-Cazares, N., García-Contreras, R., Pérez-López, M., & Castillo-Juárez, I. (2017). Phenolic compounds with anti-virulence properties. In M. Soto-Hernndez, M. Palma-Tenango, & M. D. R. Garcia-Mateos (Eds.), Phenolic Compounds – Biological Activity. InTech. https://doi.org/10.5772/66367
Paharik, A. E., & Horswill, A. R. (2016). The staphylococcal biofilm: Adhesins, regulation, and host response. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0022-2015
Pasternak, J. (2012). New methods of microbiological identification using MALDI-TOF. Einstein (São Paulo), 10, 118-119. https://doi.org/10.1590/S1679-45082012000100026
Patrial, Y. C., Tortorelli, L. P., Rodrigues, A. C. S., Santos, I. C. de O., Volpe-Chaves, C. E., Capato, G. S., Barbosa, G. A. R., Carvalho-Assef, A. P. D., & Chang, M. R. (2019). Post-neurosurgical meningitis caused by KPC-producing Klebsiella pneumoniae: Report of two cases. Revista Do Instituto De Medicina Tropical De Sao Paulo, 61, e69. https://doi.org/10.1590/S1678-9946201961069
Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., & Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 121(11), 1073-1081. https://doi.org/10.1111/apm.12083
Rezaeiroshan, A., Saeedi, M., Morteza-Semnani, K., Akbari, J., Hedayatizadeh-Omran, A., Goli, H., & Nokhodchi, A. (2022). Vesicular formation of trans-ferulic acid: An efficient approach to improve the radical scavenging and antimicrobial properties. Journal of Pharmaceutical Innovation, 17(3), 652-661. https://doi.org/10.1007/s12247-021-09543-8
Ribeiro, S. M., Fratucelli, É. D. O., Bueno, P. C. P., de Castro, M. K. V., Francisco, A. A., Cavalheiro, A. J., & Klein, M. I. (2019). Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans. BMC Complementary and Alternative Medicine, 19(1), 308. https://doi.org/10.1186/s12906-019-2717-z
Sales, M. L., Fonseca, A. A., Sales, E. B., Cottorello, A. C. P., Issa, M. A., Hodon, M. A., Soares Filho, P. M., Ramalho, A. K., Silva, M. R., Lage, A. P., & Heinemann, M. B. (2014). Evaluation of molecular markers for the diagnosis of Mycobacterium bovis. Folia Microbiologica, 59(5), 433-438. https://doi.org/10.1007/s12223-014-0317-3
Shakibaie, M. R. (2018). Bacterial biofilm and its clinical implications. Annals of Microbiology and Research, 2(1), Article 1. https://scholars.direct/Articles/microbiology/amr-2-007.php?jid=microbiology
Singh, A. K., Yadav, S., Chauhan, B. S., Nandy, N., Singh, R., Neogi, K., Roy, J. K., Srikrishna, S., Singh, R. K., & Prakash, P. (2019). Classification of clinical isolates of Klebsiella pneumoniae based on their in vitro biofilm forming capabilities and elucidation of the biofilm matrix chemistry with special reference to the protein content. Frontiers in Microbiology, 10, 669. https://doi.org/10.3389/fmicb.2019.00669
Singhal, N., Kumar, M., Kanaujia, P. K., & Virdi, J. S. (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00791
Song, X., Xia, Y. X., He, Z. D., & Zhang, H. (2018). A review of natural products with anti-biofilm activity. Current Organic Chemistry, 22(8), 789-817. https://doi.org/10.2174/1385272821666170620110041
Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Cirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 115(8), 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
Strejcek, M., Smrhova, T., Junkova, P., & Uhlik, O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01294
Šuran, J., Cepanec, I., Mašek, T., Starčević, K., Tlak Gajger, I., Vranješ, M., Radić, B., Radić, S., Kosalec, I., & Vlainić, J. (2021). Nonaqueous polyethylene glycol as a safer alternative to ethanolic propolis extracts with comparable antioxidant and antimicrobial activity. Antioxidants, 10(6), 978. https://doi.org/10.3390/antiox10060978
Trentin, D. da S., Giordani, R. B., Zimmer, K. R., da Silva, A. G., da Silva, M. V., Correia, M. T. D. S., Baumvol, I. J. R., & Macedo, A. J. (2011). Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of Ethnopharmacology, 137(1), 327-335. https://doi.org/10.1016/j.jep.2011.05.030
Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxidative Medicine and Cellular Longevity, 2020, 1356893. https://doi.org/10.1155/2020/1356893
VanEpps, J. S., & Younger, J. G. (2016). Implantable device-related infection. Shock (Augusta, Ga.), 46(6), 597-608. https://doi.org/10.1097/SHK.0000000000000692
Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. https://doi.org/10.1351/PAC-REC-10-12-04
Wang, Z., Ding, Z., Li, Z., Ding, Y., Jiang, F., & Liu, J. (2021). Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microbial Pathogenesis, 159, 105121. https://doi.org/10.1016/j.micpath.2021.105121
WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development. https://www.who.int/entity/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/index.html
Wijesinghe, G., Dilhari, A., Gayani, B., Kottegoda, N., Samaranayake, L., & Weerasekera, M. (2019). Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 28(1), 28-35. https://doi.org/10.1159/000494757
Wijesundara, N. M., & Rupasinghe, H. P. V. (2019). Bactericidal and anti-biofilm activity of ethanol extracts derived from selected medicinal plants against Streptococcus pyogenes. Molecules (Basel, Switzerland), 24(6), 1165. https://doi.org/10.3390/molecules24061165
Zheng, J.-X., Lin, Z.-W., Chen, C., Chen, Z., Lin, F.-J., Wu, Y., Yang, S.-Y., Sun, X., Yao, W.-M., Li, D.-Y., Yu, Z.-J., Jin, J.-L., Qu, D., & Deng, Q.-W. (2018). Biofilm formation in Klebsiella pneumoniae bacteremia strains was found to be associated with CC23 and the presence of wcaG. Frontiers in Cellular and Infection Microbiology, 8, 21. https://doi.org/10.3389/fcimb.2018.00021
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Evidência
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Declaração de Direito Autoral
Os autores mantêm os direitos autorais e concedem à Revista o direito de primeira publicação, com o trabalho licenciado simultaneamente sob uma Licença Creative Commons – Atribuição – Não Comercial 4.0 Internacional.