Antimicrobial effect and inhibition of biofilm formation by phenolic acids on multi-drug resistant klebsiella pneumoniae isolates from a Public Hospital from Pernambuco, Brazil

Authors

  • Rafael Artur de Queiroz Cavalcanti de Sá Universidade Federal de Pernambuco
  • Bárbara de Azevedo Ramos Universidade Federal de Pernambuco
  • Fernanda Ferrreira de Caldas Padilha Universidade Federal de Pernambuco
  • Tainara Fernandes Dantas Universidade Federal de Pernambuco
  • Amanda Vieira de Barros Universidade Federal de Pernambuco https://orcid.org/0000-0002-4648-0359
  • Bruno Oliveira de Veras Universidade Federal de Pernambuco
  • Maria Betânia Melo de Oliveira Universidade Federal de Pernambuco
  • Maria Tereza dos Santos Correia Universidade Federal de Pernambuco

DOI:

https://doi.org/10.18593/evid.34023

Keywords:

Klebsiella pneumoniae, Phenolic compounds, Enterobacteriaceae, Antimicrobial Action, Biofilm

Abstract

Klebsiella pneumoniae is an opportunistic pathogen related to several cases of healthcare-associated and community-acquired infections worldwide, especially in Brazil. Numerous studies have shown that isolated secondary metabolites, such as phenolic acids, have the potential to act against this problem. This study aimed to investigate the inhibitory potential associated with phenolic acids on growth and biofilm formation in clinical isolates of Multidrug-Resistant and Extensively Drug-Resistant K. pneumoniae (MDR/XDR-KP). Four clinical isolates from a public hospital in Recife, Pernambuco, Brazil, and a sensitive standard strain were used. The initial identification of the samples was carried out using VITEK®2 and BD-PhoenixTM 100 automation equipment, as well as the characterization of the resistance profile. The samples were then confirmed using the MALDI-TOF/MS technique. The Crystal Violet method was used to assess biofilm formation capacity. Four phenolic acids (gallic, trans-ferulic, caffeic, and 4-hydroxybenzoic) were used to evaluate the antimicrobial and biofilm-forming activities. The isolates were confirmed as K. pneumoniae species with MALDI-TOF/MS scores ranging from 2.459-2.083. The samples showed both MDR and XDR resistance profiles, and biofilm formation with different intensities. Of all the compounds tested, caffeic and trans-ferulic acids were the most effective, with growth and biofilm inhibition values of 70-85% and 70-90% using a concentration of 2 mg/mL, respectively. Notably, K. pneumoniae belongs to a group considered by the WHO to be a critical public health priority to be combated. In this context, the results showed that phenolic acids had a great potential impact on both bacterial growth and the biofilm-forming capacity of MDR/XDR-KP clinical isolates. This leads us to recognize the use of phenolic acids as a possible alternative in the fight against infections caused by MDR, XDR, and biofilm-forming bacterial species.

Downloads

Download data is not yet available.

References

Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200-214. https://doi.org/10.1016/j.crfs.2021.03.011

Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant infections: Adhesion, biofilm formation and immune evasion. Nature Reviews. Microbiology, 16(7), 397-409. https://doi.org/10.1038/s41579-018-0019-y

Bassetti, M., Righi, E., Carnelutti, A., Graziano, E., & Russo, A. (2018). Multidrug-resistant Klebsiella pneumoniae: Challenges for treatment, prevention and infection control. Expert Review of Anti-Infective Therapy, 16(10), 749-761. https://doi.org/10.1080/14787210.2018.1522249

Cadavid, E., Robledo, S. M., Quiñones, W., & Echeverri, F. (2018). Induction of biofilm formation in Klebsiella pneumoniae ATCC 13884 by several drugs: The possible role of quorum sensing modulation. Antibiotics (Basel, Switzerland), 7(4), 103. https://doi.org/10.3390/antibiotics7040103

Chen, T., Dong, G., Zhang, S., Zhang, X., Zhao, Y., Cao, J., Zhou, T., & Wu, Q. (2020). Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiology, 20(1), Article 1. https://doi.org/10.1186/s12866-020-01727-5

Conci Campos, C., Franco Roriz, N., Nogueira Espínola, C., Aguilar Lopes, F., Tieppo, C., Freitas Tetila, A., Volpe Chaves, C. E., Alexandrino de Oliveira, P., & Rodrigues Chang, M. (2017). KPC: An important mechanism of resistance in K. pneumoniae isolates from intensive care units in the Midwest region of Brazil. Journal of Infection in Developing Countries, 11(8), 646-651. https://doi.org/10.3855/jidc.8920

Cristea, O. M., Avrămescu, C. S., Bălășoiu, M., Popescu, F. D., Popescu, F., & Amzoiu, M. O. (2017). Urinary tract infection with klebsiella pneumoniae in patients with chronic kidney disease. Current Health Sciences Journal, 43(2), 137-148. https://doi.org/10.12865/CHSJ.43.02.06

Di Domenico, E. G., Cavallo, I., Sivori, F., Marchesi, F., Prignano, G., Pimpinelli, F., Sperduti, I., Pelagalli, L., Di Salvo, F., Celesti, I., Paluzzi, S., Pronesti, C., Koudriavtseva, T., Ascenzioni, F., Toma, L., De Luca, A., Mengarelli, A., & Ensoli, F. (2020). Biofilm production by carbapenem-resistant Klebsiella pneumoniae significantly increases the risk of death in oncological patients. Frontiers in Cellular and Infection Microbiology, 10, 561741. https://doi.org/10.3389/fcimb.2020.561741

Eucast. (2018, December 23). Eucast Breakpoints v 9.0 (2019). https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=299&cHash=c0a2b312e42eb8e9bd88c4e1d1cd466c

Ferreira, R. L., da Silva, B. C. M., Rezende, G. S., Nakamura-Silva, R., Pitondo-Silva, A., Campanini, E. B., Brito, M. C. A., da Silva, E. M. L., Freire, C. C. de M., da Cunha, A. F., & Pranchevicius, M.-C. da S. (2018). High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in Microbiology, 9, 3198. https://doi.org/10.3389/fmicb.2018.03198

Flores, C., Romão, C. M. C. P. A., Bianco, K., Miranda, C. C. de, Breves, A., Souza, A. P. S., Santos, R. M. R., Fonseca, B. O., Filippis, I. de, & Clementino, M. M. (2016). Detection of antimicrobial resistance genes in beta-lactamase- and carbapenemase-producing Klebsiella pneumoniae by patient surveillance cultures at an intensive care unit in Rio de Janeiro, Brazil. Jornal Brasileiro de Patologia e Medicina Laboratorial, 52, 284-292. https://doi.org/10.5935/1676-2444.20160049

Floyd, K. A., Eberly, A. R., & Hadjifrangiskou, M. (2017). Adhesion of bacteria to surfaces and biofilm formation on medical devices. In Biofilms and Implantable Medical Devices (pp. 47-95). Elsevier. https://doi.org/10.1016/B978-0-08-100382-4.00003-4

Freire, F. E. C., Neto, J. H. A., Silva, D. P. da, Gonçalves, R. C., Menezes, A. C. S., & Naves, P. L. F. (2018). Inhibitory activity of 3,4,5-tris(acetyloxy)benzoic acid against bacterial biofilms formation. Revista Virtual de Química, 10(4), 767-777. https://doi.org/10.21577/1984-6835.20180056

Gato, E., Rosalowska, A., Martínez-Guitián, M., Lores, M., Bou, G., & Pérez, A. (2020). Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 132, 110885. https://doi.org/10.1016/j.biopha.2020.110885

Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., & Tribedi, P. (2016). Biofilm, pathogenesis and prevention – A journey to break the wall: A review. Archives of Microbiology, 198(1), 1-15. https://doi.org/10.1007/s00203-015-1148-6

Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA, 81(1), 7-11. https://doi.org/10.1016/j.jcma.2017.07.012

Khalil, M. A. F., Hager, R., Abd-El Reheem, F., Mahmoud, E. E., Samir, T., Moawad, S. S., & Hefzy, E. M. (2019). A study of the virulence traits of carbapenem-resistant Klebsiella pneumoniae isolates in a Galleria mellonella model. Microbial Drug Resistance (Larchmont, N.Y.), 25(7), 1063-1071. https://doi.org/10.1089/mdr.2018.0270

Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12), e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

Kot, B., Kwiatek, K., Janiuk, J., Witeska, M., & Pękala-Safińska, A. (2019). Antibacterial activity of commercial phytochemicals against Aeromonas species isolated from fish. Pathogens, 8(3), 142. https://doi.org/10.3390/pathogens8030142

Kot, B., Wicha, J., Piechota, M., Wolska, K., & Gruzewska, A. (2015). Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45(4), 919-924. https://doi.org/10.3906/sag-1406-112

Ku, Y.-H., Chuang, Y.-C., Chen, C.-C., Lee, M.-F., Yang, Y.-C., Tang, H.-J., & Yu, W.-L. (2017). Klebsiella pneumoniae isolates from meningitis: Epidemiology, virulence and antibiotic resistance. Scientific Reports, 7(1), 6634. https://doi.org/10.1038/s41598-017-06878-6

Li, G., Zhao, S., Wang, S., Sun, Y., Zhou, Y., & Pan, X. (2019). A 7-year surveillance of the drug resistance in Klebsiella pneumoniae from a primary health care center. Annals of Clinical Microbiology and Antimicrobials, 18, 34. https://doi.org/10.1186/s12941-019-0335-8

Li, Y., Shan, M., Zhu, Z., Mao, X., Yan, M., Chen, Y., Zhu, Q., Li, H., & Gu, B. (2019). Application of MALDI-TOF MS to rapid identification of anaerobic bacteria. BMC Infectious Diseases, 19(1), 941. https://doi.org/10.1186/s12879-019-4584-0

Lin, T.-H., Wu, C.-C., Tseng, C.-Y., Fang, J.-H., & Lin, C.-T. (2022). Effects of gallic acid on capsular polysaccharide biosynthesis in Klebsiella pneumoniae. Journal of Microbiology, Immunology, and Infection = Wei Mian Yu Gan Ran Za Zhi, 55(6 Pt 2), 1255-1262. https://doi.org/10.1016/j.jmii.2021.07.002

Liu, F., Sun, Z., Wang, F., Liu, Y., Zhu, Y., Du, L., Wang, W., & Xu, W. (2020). Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. F Micro [Internet]. 86, 103344. https://doi.org/10.1016/j.fm.2019.103344

Lu, L., Hu, W., Tian, Z., Yuan, D., Yi, G., Zhou, Y., Cheng, Q., Zhu, J., & Li, M. (2019). Developing natural products as potential anti-biofilm agents. Chinese Medicine, 14(1), Article 1. https://doi.org/10.1186/s13020-019-0232-2

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Mani, M., Okla, M. K., Selvaraj, S., Ram Kumar, A., Kumaresan, S., Muthukumaran, A., Kaviyarasu, K., El-Tayeb, M. A., Elbadawi, Y. B., Almaary, K. S., Ahmed Almunqedhi, B. M., & Elshikh, M. S. (2021). A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7cell line. Environmental Research, 198, 111199. https://doi.org/10.1016/j.envres.2021.111199

Martin, R. M., & Bachman, M. A. (2018). Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8, 4. https://doi.org/10.3389/fcimb.2018.00004

Muñoz-Cazares, N., García-Contreras, R., Pérez-López, M., & Castillo-Juárez, I. (2017). Phenolic compounds with anti-virulence properties. In M. Soto-Hernndez, M. Palma-Tenango, & M. D. R. Garcia-Mateos (Eds.), Phenolic Compounds – Biological Activity. InTech. https://doi.org/10.5772/66367

Paharik, A. E., & Horswill, A. R. (2016). The staphylococcal biofilm: Adhesins, regulation, and host response. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0022-2015

Pasternak, J. (2012). New methods of microbiological identification using MALDI-TOF. Einstein (São Paulo), 10, 118-119. https://doi.org/10.1590/S1679-45082012000100026

Patrial, Y. C., Tortorelli, L. P., Rodrigues, A. C. S., Santos, I. C. de O., Volpe-Chaves, C. E., Capato, G. S., Barbosa, G. A. R., Carvalho-Assef, A. P. D., & Chang, M. R. (2019). Post-neurosurgical meningitis caused by KPC-producing Klebsiella pneumoniae: Report of two cases. Revista Do Instituto De Medicina Tropical De Sao Paulo, 61, e69. https://doi.org/10.1590/S1678-9946201961069

Plyuta, V., Zaitseva, J., Lobakova, E., Zagoskina, N., Kuznetsov, A., & Khmel, I. (2013). Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 121(11), 1073-1081. https://doi.org/10.1111/apm.12083

Rezaeiroshan, A., Saeedi, M., Morteza-Semnani, K., Akbari, J., Hedayatizadeh-Omran, A., Goli, H., & Nokhodchi, A. (2022). Vesicular formation of trans-ferulic acid: An efficient approach to improve the radical scavenging and antimicrobial properties. Journal of Pharmaceutical Innovation, 17(3), 652-661. https://doi.org/10.1007/s12247-021-09543-8

Ribeiro, S. M., Fratucelli, É. D. O., Bueno, P. C. P., de Castro, M. K. V., Francisco, A. A., Cavalheiro, A. J., & Klein, M. I. (2019). Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans. BMC Complementary and Alternative Medicine, 19(1), 308. https://doi.org/10.1186/s12906-019-2717-z

Sales, M. L., Fonseca, A. A., Sales, E. B., Cottorello, A. C. P., Issa, M. A., Hodon, M. A., Soares Filho, P. M., Ramalho, A. K., Silva, M. R., Lage, A. P., & Heinemann, M. B. (2014). Evaluation of molecular markers for the diagnosis of Mycobacterium bovis. Folia Microbiologica, 59(5), 433-438. https://doi.org/10.1007/s12223-014-0317-3

Shakibaie, M. R. (2018). Bacterial biofilm and its clinical implications. Annals of Microbiology and Research, 2(1), Article 1. https://scholars.direct/Articles/microbiology/amr-2-007.php?jid=microbiology

Singh, A. K., Yadav, S., Chauhan, B. S., Nandy, N., Singh, R., Neogi, K., Roy, J. K., Srikrishna, S., Singh, R. K., & Prakash, P. (2019). Classification of clinical isolates of Klebsiella pneumoniae based on their in vitro biofilm forming capabilities and elucidation of the biofilm matrix chemistry with special reference to the protein content. Frontiers in Microbiology, 10, 669. https://doi.org/10.3389/fmicb.2019.00669

Singhal, N., Kumar, M., Kanaujia, P. K., & Virdi, J. S. (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00791

Song, X., Xia, Y. X., He, Z. D., & Zhang, H. (2018). A review of natural products with anti-biofilm activity. Current Organic Chemistry, 22(8), 789-817. https://doi.org/10.2174/1385272821666170620110041

Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Cirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 115(8), 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Strejcek, M., Smrhova, T., Junkova, P., & Uhlik, O. (2018). Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01294

Šuran, J., Cepanec, I., Mašek, T., Starčević, K., Tlak Gajger, I., Vranješ, M., Radić, B., Radić, S., Kosalec, I., & Vlainić, J. (2021). Nonaqueous polyethylene glycol as a safer alternative to ethanolic propolis extracts with comparable antioxidant and antimicrobial activity. Antioxidants, 10(6), 978. https://doi.org/10.3390/antiox10060978

Trentin, D. da S., Giordani, R. B., Zimmer, K. R., da Silva, A. G., da Silva, M. V., Correia, M. T. D. S., Baumvol, I. J. R., & Macedo, A. J. (2011). Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of Ethnopharmacology, 137(1), 327-335. https://doi.org/10.1016/j.jep.2011.05.030

Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxidative Medicine and Cellular Longevity, 2020, 1356893. https://doi.org/10.1155/2020/1356893

VanEpps, J. S., & Younger, J. G. (2016). Implantable device-related infection. Shock (Augusta, Ga.), 46(6), 597-608. https://doi.org/10.1097/SHK.0000000000000692

Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. https://doi.org/10.1351/PAC-REC-10-12-04

Wang, Z., Ding, Z., Li, Z., Ding, Y., Jiang, F., & Liu, J. (2021). Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microbial Pathogenesis, 159, 105121. https://doi.org/10.1016/j.micpath.2021.105121

WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development. https://www.who.int/entity/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/index.html

Wijesinghe, G., Dilhari, A., Gayani, B., Kottegoda, N., Samaranayake, L., & Weerasekera, M. (2019). Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre, 28(1), 28-35. https://doi.org/10.1159/000494757

Wijesundara, N. M., & Rupasinghe, H. P. V. (2019). Bactericidal and anti-biofilm activity of ethanol extracts derived from selected medicinal plants against Streptococcus pyogenes. Molecules (Basel, Switzerland), 24(6), 1165. https://doi.org/10.3390/molecules24061165

Zheng, J.-X., Lin, Z.-W., Chen, C., Chen, Z., Lin, F.-J., Wu, Y., Yang, S.-Y., Sun, X., Yao, W.-M., Li, D.-Y., Yu, Z.-J., Jin, J.-L., Qu, D., & Deng, Q.-W. (2018). Biofilm formation in Klebsiella pneumoniae bacteremia strains was found to be associated with CC23 and the presence of wcaG. Frontiers in Cellular and Infection Microbiology, 8, 21. https://doi.org/10.3389/fcimb.2018.00021

Downloads

Published

12/16/2024

How to Cite

Sá, R. A. de Q. C. de, Ramos, B. de A., Padilha, F. F. de C., Dantas, T. F., Barros, A. V. de, Veras, B. O. de, Oliveira, M. B. M. de, & Correia, M. T. dos S. (2024). Antimicrobial effect and inhibition of biofilm formation by phenolic acids on multi-drug resistant klebsiella pneumoniae isolates from a Public Hospital from Pernambuco, Brazil. Evidence, 24, e34023. https://doi.org/10.18593/evid.34023

Issue

Section

Biosciences

Most read articles by the same author(s)