Evaluation of the therapeutic effects of lectin obtained from Canavalia brasiliensis seeds (ConBr) in cutaneous lesions infected with Staphylococcus aureus

Authors

  • Karla Lilian Rodrigues Batista Universidade CEUMA
  • Lucas dos Santos Silva Universidade CEUMA https://orcid.org/0000-0002-7483-3238
  • Simeone Júlio dos Santos Castelo Branco Universidade Federal de Pernambuco
  • Miria Yasmim Miranda Paiva Universidade CEUMA
  • Izadora Souza Soeiro Silva Universidade CEUMA
  • Carlos Eduardo Morais de Sousa Universidade CEUMA https://orcid.org/0009-0003-2476-9535
  • João Lucas Sales Santos Universidade CEUMA
  • Patrícia Maria Guedes Paiva Universidade Federal de Pernambuco
  • Claudener Souza Texeira Universidade Federal do Cariri
  • Luís Cláudio Nascimento da Silva UNIVERSIDADE CEUMA https://orcid.org/0000-0002-4206-0904

DOI:

https://doi.org/10.18593/evid.34475

Keywords:

Plant bioactive compounds, Bacterial infections, Wound Infection

Abstract

Lectins of plant origin have gained prominence as immunomodulatory compounds; one example is the lectin extracted from Canavalia brasiliensis (ConBr). The lack of information related to the action of ConBr on infected wounds stimulated this research. Therefore, this study aimed to verify the therapeutic effects of the ConBr lectin on skin lesions infected by Staphylococcus aureus. The experimental wounds were induced on the back of Swiss mice, and the infectious process was caused by the addition of suspensions of S. aureus ATCC6538 (standard strain) or SA01 (clinical strain) to the newly produced wounds, which were treated with the lectin ConBr (200 µg /mL) and clinically evaluated for 10 days. After 3 and 10 days of treatment, the wounds were collected to evaluate bacterial load and nitric oxide (NO) levels. The use of ConBr on infected wounds could not contain the inflammation, regardless of the infecting strain. However, the area of the lesions was reduced. Lectin treatment also promoted a reduction in bacterin load, especially in wounds infected by the standard strain, where NO levels were increased by lectin treatment.

Downloads

Download data is not yet available.

References

Almuhayawi, M. S., Alruhaili, M. H., Gattan, H. S., Alharbi, M. T., Nagshabandi, M., Jaouni, S. Al, Selim, S., Alanazi, A., Alruwaili, Y., Faried, O. A., & Elnosary, M. E. (2023). Staphylococcus aureus Induced Wound Infections Which Antimicrobial Resistance, Methicillin- and Vancomycin-Resistant: Assessment of Emergence and Cross Sectional Study. Infection and Drug Resistance, 16, 5335. https://doi.org/10.2147/IDR.S418681

Andrade, J. L., Arruda, S., Barbosa, T., Paim, L., Ramos, M. V., Cavada, B. S., & Barral-Netto, M. (1999). Lectin-induced nitric oxide production. Cellular immunology, 194(1), 98–102. https://doi.org/10.1006/CIMM.1999.1494

Arruda, I. R. S., Souza, M. P., Soares, P. A. G., Albuquerque, P. B. S., Silva, T. D., Medeiros, P. L., Silva, M. V., Correia, M. T. S., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2021). Xyloglucan and Concanavalin A based dressings in the topical treatment of mice wound healing process. Carbohydrate Polymer Technologies and Applications, 2, 100136. https://doi.org/10.1016/J.CARPTA.2021.100136

Batista, J. E. C., Ralph, M. T., Vaz, R. V., Souza, P. F. C., Silva, A. B., Nascimento, D. C. O., Souza, L. T., Ramos, M. V., Mastroeni, P., & Lima-Filho, J. V. (2017). Plant lectins ConBr and CFL modulate expression toll-like receptors, pro-inflammatory cytokines and reduce the bacterial burden in macrophages infected with Salmonella enterica serovar Typhimurium. Phytomedicine, 25, 52–60. https://doi.org/10.1016/J.PHYMED.2016.12.005

Bazán, J. M. N., Chagas, V. L., Silva, R. G., Soeiro Silva, I. S., Nantes Araujo, J. G., Silva, L. dos S., Batista, K. L. R., Silva, R. R. dos S., Correia, M. T. dos S., Sousa, J. C. de S., Monteiro, C. de A., Tofanello, A., Garcia, W., Carvalho, E. M., Teixeira, C. S., & Nascimento da Silva, L. C. (2023). Development and characterization of alginate-derived bioadhesive films incorporated with anti-infective lectins for application in the treatment of oral candidiasis. Journal of Drug Delivery Science and Technology, 105114. https://doi.org/10.1016/J.JDDST.2023.105114

Bezerra, E. H. S., Rocha, B. A. M., Nagano, C. S., Bezerra, G. de A., Moura, T. R. de, Bezerra, M. J. B., Benevides, R. G., Sampaio, A. H., Assreuy, A. M. S., Delatorre, P., & Cavada, B. S. (2011). Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochemical and biophysical research communications, 408(4), 566–570. https://doi.org/10.1016/J.BBRC.2011.04.061

Chopra, H., Kumar, S., & Singh, I. (2022). Strategies and Therapies for Wound Healing: A Review. Current drug targets, 23(1), 87–98. https://doi.org/10.2174/1389450122666210415101218

Coelho, L. C. B. B., Silva, P. M. D. S., Lima, V. L. D. M., Pontual, E. V., Paiva, P. M. G., Napoleão, T. H., & Correia, M. T. D. S. (2017). Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. Evidence-based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/1594074

da Silva, L. C. N., Alves, N. M. P., de Castro, M. C. A. B., Pereira, V. R. A., da Paz, N. V. N., Coelho, L. C. B. B., de Figueiredo, R. C. B. Q., & Correia, M. T. dos S. (2015). Immunomodulatory effects of pCramoll and rCramoll on peritoneal exudate cells (PECs) infected and non-infected with Staphylococcus aureus. International journal of biological macromolecules, 72, 848–854. https://doi.org/10.1016/J.IJBIOMAC.2014.09.045

Da, T., & Malaquias, S. M. (2015). TRATAMENTOS NÃO CONVENCIONAIS PARA O TRATAMENTO DE FERIDAS. Revista Contexto & Saúde, 15(29), 22–29. https://doi.org/10.21527/2176-7114.2015.29.22-29

De Oliveira Silva, F., Das Neves Santos, P., De Melo, C. M. L., Teixeira, E. H., De Sousa Cavada, B., Pereira, V. A. R., Porto, A. L. F., Cajazeiras, J. B., Arruda, F. V. S., & Almeida, A. C. (2011). Immunostimulatory activity of ConBr: a focus on splenocyte proliferation and proliferative cytokine secretion. Cell and tissue research, 346(2), 237–244. https://doi.org/10.1007/S00441-011-1239-X

de Sousa, F. D., Vasconselos, P. D., da Silva, A. F. B., Mota, E. F., da Rocha Tomé, A., Mendes, F. R. da S., Gomes, A. M. M., Abraham, D. J., Shiwen, X., Owen, J. S., Lourenzoni, M. R., Campos, A. R., Moreira, R. de A., & Monteiro-Moreira, A. C. de O. (2019). Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. International journal of biological macromolecules, 121, 429–442. https://doi.org/10.1016/J.IJBIOMAC.2018.10.050

Falanga, V., Isseroff, R. R., Soulika, A. M., Romanelli, M., Margolis, D., Kapp, S., Granick, M., & Harding, K. (2022). Chronic wounds. Nature Reviews Disease Primers 2022 8:1, 8(1), 1–21. https://doi.org/10.1038/s41572-022-00377-3

Ferreira, R. M., dos Santos Silva, D. H., Silva, K. F., de Melo Monteiro, J., Ferreira, G. F., Silva, M. R. C., da Silva, L. C. N., de Castro Oliveira, L., & Monteiro, A. S. (2023). Draft genome sequence of Staphylococcus aureus sequence type 5 SA01 isolated from bloodstream infection and comparative analysis with reference strains. Functional and Integrative Genomics, 23(3), 1–15. https://doi.org/10.1007/S10142-023-01204-Y/FIGURES/8

Figueiredo, C. S. S. e. S., Oliveira, P. V. de, Saminez, W. F. da S., Diniz, R. M., Mendonça, J. S. P., Silva, L. dos S., Paiva, M. Y. M., Nascimento, M. de S. do, Aliança, A. S. dos S., Zagmignan, A., Rodrigues, J. F. S., Souza, J. C. de S., Grisotto, M. A. G., & Silva, L. C. N. da. (2023). Immunomodulatory Effects of Cinnamaldehyde in Staphylococcus aureus-Infected Wounds. Molecules (Basel, Switzerland), 28(3). https://doi.org/10.3390/MOLECULES28031204

Fonseca, V. J. A., Braga, A. L., Filho, J. R., Teixeira, C. S., da Hora, G. C. A., & Morais-Braga, M. F. B. (2022). A review on the antimicrobial properties of lectins. International journal of biological macromolecules, 195, 163–178. https://doi.org/10.1016/J.IJBIOMAC.2021.11.209

Freedman, B. R., Hwang, C., Talbot, S., Hibler, B., Matoori, S., & Mooney, D. J. (2023). Breakthrough treatments for accelerated wound healing. Science Advances, 9(20). https://doi.org/10.1126/SCIADV.ADE7007

Gomes, B. S., Siqueira, A. B. S., Maia, R. de C. C., Giampaoli, V., Teixeira, E. H., Arruda, F. V. S., do Nascimento, K. S., de Lima, A. N., Souza-Motta, C. M., Cavada, B. S., & Porto, A. L. F. (2012). Antifungal activity of lectins against yeast of vaginal secretion. Brazilian Journal of Microbiology, 43(2), 770–778. https://doi.org/10.1590/S1517-83822012000200042

Graves, N., Ganesan, G., Tan, K. B., Goh, O. Q., Ho, J., Chong, T. T., Bishnoi, P., Carmody, D., Yuh, A. S., Ng, Y. Z., Lo, Z., Enming, Y., Aloweni, F. A. B., Zifei, W., & Harding, K. (2023). Original research: Chronic wounds in a multiethnic Asian population: a cost of illness study. BMJ Open, 13(9), e065692. https://doi.org/10.1136/BMJOPEN-2022-065692

Grosche, V. R., Souza, L. P. F., Ferreira, G. M., Guevara-Vega, M., Carvalho, T., Silva, R. R. dos S., Batista, K. L. R., Abuna, R. P. F., Silva, J. S., Calmon, M. de F., Rahal, P., da Silva, L. C. N., Andrade, B. S., Teixeira, C. S., Sabino-Silva, R., & Jardim, A. C. G. (2023). Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses, 15(9), 1886. https://doi.org/10.3390/V15091886

Guedes, R. S., Glebya, Z., Quirino, M., & Gonçalves, E. P. (2009). Fenologia reprodutiva e biologia da polinização de Canavalia brasiliensis Mart. ex Benth (Fabaceae). Biotemas, 22(1), 27–37. https://doi.org/10.5007/2175-7925.2009V22N1P27

Gushiken, L. F. S., Beserra, F. P., Bastos, J. K., Jackson, C. J., & Pellizzon, C. H. (2021). Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life 2021, Vol. 11, Page 665, 11(7), 665. https://doi.org/10.3390/LIFE11070665

Katoch, R., & Tripathi, A. (2021). Research advances and prospects of legume lectins. Journal of biosciences, 46(4). https://doi.org/10.1007/S12038-021-00225-8

Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970 227:5259, 227(5259), 680–685. https://doi.org/10.1038/227680a0

Lal, D. K., Kumar, B., Raghav, S. S., Bhargava, S., Singhal, M., & Sethiya, N. K. (2023). Lectin: A carbohydrate binding glyoprotein and its potential in wound healing. Bioactive Carbohydrates and Dietary Fibre, 30, 100379. https://doi.org/10.1016/J.BCDF.2023.100379

Melo, C. M. L. De, Porto, C. S., Melo, M. R., Mendes, C. M. I., Cavalcanti, C. C. B., Coelho, L. C. B. B., Porto, A. L. F., Dos Anjos Carneiro Leão, A. M., & Dos Santos Correia, M. T. (2011). Healing activity induced by Cramoll 1,4 lectin in healthy and immunocompromised mice. International journal of pharmaceutics, 408(1–2), 113–119. https://doi.org/10.1016/J.IJPHARM.2011.02.011

Moreira, R. A., & Gavada, B. S. (1984). Lectin from Canavalia brasiliensis (MART.). isolation, characterization and behavior during germination. Biologia Plantarum, 26(2), 113–120. https://doi.org/10.1007/BF02902274/METRICS

Naithani, S., Komath, S. S., Nonomura, A., & Govindjee, G. (2021). Plant lectins and their many roles: Carbohydrate-binding and beyond. Journal of Plant Physiology, 266, 153531. https://doi.org/10.1016/J.JPLPH.2021.153531

Nunes, M. A. S., Silva, L. dos S., Santos, D. M., Cutrim, B. da S., Vieira, S. L., Silva, I. S. S., Castelo Branco, S. J. dos S., Nascimento, M. de S. do, Vale, A. A. M., Santos-Azevedo, A. P. S. dos, Zagmignan, A., Sousa, J. C. de S., Napoleão, T. H., Paiva, P. M. G., Monteiro-Neto, V., & Nascimento da Silva, L. C. (2022). Schinus terebinthifolius Leaf Lectin (SteLL) Reduces the Bacterial and Inflammatory Burden of Wounds Infected by Staphylococcus aureus Promoting Skin Repair. Pharmaceuticals 2022, Vol. 15, Page 1441, 15(11), 1441. https://doi.org/10.3390/PH15111441

Oliveira, S. R. B. D., Franco, Á. X., Quaresma, M. P., de Carvalho, C. M. M., da Cunha Jácome Marques, F., da Silva Pantoja, P., Mendonça, V. A., da Silva Osterne, V. J., Correia, J. L. A., Assreuy, A. M. S., de Souza, M. H. L. P., do Nascimento, K. S., Cavada, B. S., Criddle, D. N., & Soares, P. M. G. (2022). Anti-inflammatory and anti-necrotic effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in experimental acute pancreatitis. Glycoconjugate journal, 39(5). https://doi.org/10.1007/S10719-022-10048-W

Rodriguez, D., Cavada, B. S., Abreu-De-Oliveira, J. T., De-Azevedo-Moreira, R., & Russo, M. (1992). Differences in macrophage stimulation and leukocyte accumulation in response to intraperitoneal administration of glucose/mannose-binding plant lectins. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 25(8), 823–826. https://europepmc.org/article/med/1342615

Silva, A. F. B., Matos, M. P. V., Ralph, M. T., Silva, D. L., De Alencar, N. M., Ramos, M. V., & Lima-Filho, J. V. (2016). Comparison of immunomodulatory properties of mannose-binding lectins from Canavalia brasiliensis and Cratylia argentea in a mice model of Salmonella infection. International immunopharmacology, 31, 233–238. https://doi.org/10.1016/J.INTIMP.2015.12.036

Silva, F. de O., Araújo, R. V. de S., Schirato, G. V., Teixeira, E. H., de Melo Júnior, M. R., Cavada, B. de S., de Lima-Filho, J. L., Carneiro-Leão, A. M. dos A., & Porto, A. L. F. (2009). Perfil de proteases de lesões cutâneas experimentais em camundongos tratadas com a lectina isolada das sementes de Canavalia brasiliensis. Ciência Rural, 39(6), 1808–1814. https://doi.org/10.1590/S0103-84782009000600026

Silva, F. de O., Santos, P. das N., FigueirÔa, E. de O., de Melo, C. M. L., de Andrade Lemoine Neves, J. K., Arruda, F. V. S., Cajazeiras, J. B., do Nascimento, K. S., Teixeira, E. H., Cavada, B. S., Porto, A. L. F., & Pereira, V. R. A. (2014). Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells. Research in Veterinary Science, 96(2), 276–282. https://doi.org/10.1016/J.RVSC.2014.01.005

Sorg, H., & Sorg, C. G. G. (2023). Skin Wound Healing: Of Players, Patterns, and Processes. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, 64(2), 141–157. https://doi.org/10.1159/000528271

Soundararajan, L., Dharmarajan, A., & Samji, P. (2023). Regulation of pleiotropic physiological roles of nitric oxide signaling. Cellular signalling, 101. https://doi.org/10.1016/J.CELLSIG.2022.110496

Steffani, J. A., Kroth, A., Lorencete, N. A., & D’Agostini, F. M. (2012). Uso de microcorrentes na cicatrização tecidual. Evidência, 11(1), 43–50. https://periodicos.unoesc.edu.br/evidencia/article/view/1462

Suarez Carneiro, M. A. M., Silva, L. dos S., Diniz, R. M., Saminez, W. F. da S., Oliveira, P. V. de, Pereira Mendonça, J. S., Colasso, A. H. M., Soeiro Silva, I. S., Jandú, J. J. B., Sá, J. C. de, Figueiredo, C. S. S. e. S., Correia, M. T. dos S., & Nascimento da Silva, L. C. (2021). Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. International Immunopharmacology, 100, 108094. https://doi.org/10.1016/J.INTIMP.2021.108094

Published

12/10/2024

How to Cite

Karla Lilian Rodrigues, Silva, L. dos S., Castelo Branco, S. J. dos S., Paiva, M. Y. M., Silva, I. S. S., Sousa, C. E. M. de, Santos, J. L. S., Paiva, P. M. G., Texeira, C. S., & Silva, L. C. N. da. (2024). Evaluation of the therapeutic effects of lectin obtained from Canavalia brasiliensis seeds (ConBr) in cutaneous lesions infected with Staphylococcus aureus. Evidence, 24(Ed. Especial), e34475. https://doi.org/10.18593/evid.34475

Issue

Section

Special Edition

Most read articles by the same author(s)