Fungal xylanases: use of wheat bran in fermentative processes and baking

Authors

  • Lincoln Malagutti dos Santos Universidade Estadual de Maringá
  • Ravely Casarotti Orlandelli Universidade Estadual do Paraná, campus Paranavaí https://orcid.org/0000-0002-1359-4210

DOI:

https://doi.org/10.18593/eba.v19i2.21819

Keywords:

Enzymatic production, Microbial enzymes, Fermentative processes

Abstract

Wheat bran (FT), a lignocellulose-rich byproduct obtained from the milling of wheat grains, can be used for the development of high value-added products. Therefore, this literature review addresses the use of WB to obtain fungal xylanases by Submerged Fermentation (SF) and Solid State Fermentation (SSF), and discusses the role of these enzymes in improving the quality of bread production. For this, a bibliographic survey was performed in several databases. The studies analyzed proved the efficiency of WB as substrate for xylanase production, but the high enzymatic activities were dependent on fermentative conditions. FES, at relatively acidic pH, was more promising to obtain the enzyme. Xylanase can be applied in the bakery sector for the hydrolysis of xylans (which prevent the development of gluten formation), enabling an easy-to-handle mass with better oven-spring and specific volume, and regular crumb structure.

Downloads

Download data is not yet available.

Author Biographies

Lincoln Malagutti dos Santos, Universidade Estadual de Maringá

Graduado em Tecnologia de Alimentos pela Universidade Tecnológica Federal do Paraná, campus Campo Mourão. Especialista em Biotecnologia e Bioprocessos pela Univesidade Estadual de Maringá.

Ravely Casarotti Orlandelli, Universidade Estadual do Paraná, campus Paranavaí

Graduada em Ciências Biológicas pela Universidade do Oeste Paulista. Doutora em Biologia Comparada (Biologia das Interações Orgânicas) pela Universidade Estadual de Maringá. Professora da Universidade Estadual do Paraná, campus Paranavaí

References

Food and Agriculture Organization of the United Nations. Statistics Division [Internet]. [citado em 2009 ago 2 ago]. Disponível em: http://www.fao.org/faostat/en/#data/QC/visualize

Secretaria da Agricultura e do Abastecimento (PR), Departamento de Economia Rural. Análise da Conjuntura Agropecuária Safra 2008/09. Curitiba: Secretaria da Agricultura e do Abastecimento; 2009.

Belderok B, Mesdag J, Donner DA. Bread making quality of wheat: a century of breeding in Europe. Dordrecht: Kluwer Academic Publishers; 2000. 416 p.

Ministério da Agricultura, Pecuária e Abastecimento (BR), Secretaria de Política Agrícola. Política agrícola brasileira para a triticultura e demais culturas de inverno. Brasília: Ministério da Agricultura, Pecuária e Abastecimento: Secretaria de Política Agrícola; 2012.

Coultate T. Food: the chemistry of its components. 6th ed. Cambridge: The Royal Society of Chemistry; 2016. 599 p.

Kumar BA, Amit K, Alok K, Dharm D. Wheat bran fermentation for the production of cellulase and xylanase by Aspergillus niger NFCCI 4113. Res. J. Biotech. 2018;13(5):11-8.

Orlandelli RC, Almeida TT, Alberto RN, Polonio JC, Azevedo JL, Pamphile JA. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz. J. Microbiol. 2015;46(2):359-66. doi:10.1590/S1517-838246220131042

Orlandelli RC, Santos MS, Polonio JC, Azevedo JL, Pamphile JA. Use of agro-industrial wastes as substrates for α-amylase production by endophytic fungi isolated from Piper hispidum Sw. Acta Sci. Technol. 2017;39(3):255-61. doi:10.4025/actascitechnol.v39i3.30067

Felber AC, Specian V, Orlandelli RC, Costa AT, Polonio JC, Mourão KSM, et al. Endoglucanase production by endophytic fungi isolated from Vitis labrusca L. with peanut hull and sawdust as substrates. Biosci. J. 2019;35(3):933-40. doi:10.14393/BJ-v35n3a2019-42403

Monteiro VN, Silva RN. Aplicações industriais da biotecnologia enzimática. Rev. Proc. Quim. 2009;3(5):9-23.

Kshirsagar A, Chandak A, Murarkar K. Production of xylanase from low cost wheat bran, corn cobs and pigeon pea pods waste by isolated fungi under solid state fermentation. Int. J. Recent Sci. Res. 2018;9(5):26584-88. doi:10.24327/ijrsr.2018.0905.2085

Bakker CMCN, Santos ES, Macedo GR. Produção de xilanases por fermentação em estado solido, de farelo de trigo utilizando consorcios fúngicos. Hig. Aliment. 2017;31(266-67):80-4.

Roveda M, Hemkemeier M, Colla LM. Avaliação da produção de lipases por diferentes cepas de microrganismos isolados em efluentes de laticínios por fermentação submersa. Ciênc. Tecnol. Aliment. 2010;30(1):126-31. doi:10.1590/S0101-20612010000100019

Zaha A, Ferreira HB, Passaglia, LMP, organizadores. Biologia molecular básica. 5ª ed. Porto Alegre: ArtMed; 2014. 416 p.

Sant’anna Junior GL. Produção de enzimas microbianas. In: Lima UA, Aquarone E, Borzani W, Schmidell W, coordenadores. Biotecnologia industrial – processos fermentativos e enzimáticos. São Paulo: Edgard Blücher; 2001. p. 351-362.

Pandey A. Solid-state fermentation. Biochem. Eng. J. 2003;13(2-3):81-4. doi:10.1016/S1369-703X(02)00121-3

Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011;29:365-73. doi:10.1016/j.biotechadv.2011.01.008

Orlandelli RC, Specian V, Felber AC, Pamphile JA. Enzimas de interesse industrial: produção por fungos e aplicações. SaBios: Rev. Saúde e Biol. 2012;7(3):97-109.

European Commission. Collection of information on enzymes – final report, 2002 [Internet]. Luxemburgo: Office for Official Publications of the European Communities [citado em 2019 ago 2 ]. Disponível em: http://ec.europa.eu/environment/archives/dansub/pdfs/enzymerepcomplete.pdf

Simões LCO, Silva RR, Nascimento CEO, Boscolo M, Gomes E, Silva, R. Purification and physicochemical characterization of a novel thermostable xylanase secreted by the fungus Myceliophthora heterothallica F.2.1.4. Appl. Bochem. Biotechnol. 2019;188(4):991-1008. doi: 10.1007/s12010-019-02973-8

Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int. J. Sci. Nat. 2012;3(3):480-86.

Pandey A. Recent process developments in solid-state fermentation. Process Biochem. 1992;27(2):109-17. doi:10.1016/0032-9592(92)80017-W

Babu KR, Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J. Sci. Ind. Res. 1996;55(5-6):464-67.

Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 1999;23(4):411-56. doi:10.1111/j.1574-6976.1999.tb00407.x

Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT. Xylanases and their applications in baking industry. Food Technol. Biotechnol. 2008;46(1):22-31.

Sharma S, Baja BK. Xylanase production from a new strain of Aspergillus terreus

S9 and its application for saccharification of rice straw using combinatorial approach.

Environ. Prog. Sustain. Energy. 2017;37(3):1210-19. doi:10.1002/ep.12779

Amorim CC. Liquefação de farelo de trigo para produção de xilanases por cultivo submerso de Aspergillus niger [dissertação]. Campinas: Universidade Estadual de Campinas, Faculdade de Engenharia Química; 2017.

Zanchetta, A. Produção de celulases fúngicas por fermentação em estado sólido e submersa utilizando biomassa lignocelulósica [dissertação]. São José do Rio Preto: Universidade Estadual Paulista “Júlio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas; 2012.

Menezes BS, Rossi DM, Squina F, Ayub MAZ. Comparative production of xylanase and the liberation of xylooligosaccharides from lignocellulosic biomass by Aspergillus brasiliensis BLf1 and recombinant Aspergillus nidulans XynC A773. Int. J. Food Sci. Technol. 2018;53(9):2110-8. doi:10.1111/ijfs.13798

Gomes AFS, Santos BSL, Fransciscon EG, Baffi MA. Substract and temperature effect on xylanase production by Aspergillus fumigatus using low coast agricultural wastes. Biosci. J. 2016;32(4):915-21. doi:10.14393/BJ-v32n4a2016-32935

Pereira JC, Marques NP, Rodrigues A, Oliveira TB, Boscolo T, Silva R, et al. Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J. Appl. Microbiol. 2015;118(4):928-39. doi:10.1111/jam.12757

Shahryari Z, Fazaelipoor MH, Ghasemi Y, Lennartsson PR, Taherzadeh MJ. Amylase and xylanase from edible fungus Neurospora intermedia: production and characterization. Molecules. 2019;24(4). doi:10.3390/molecules24040721

Marques NP, Pereira JC, Gomes E, Silva R, Araujo AR, Ferreira H, et al. Cellulases and xylanases production by endophytic fungi by solid statefermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind. Crop. Prod. 2018;122:66-75. doi:10.1016/j.indcrop.2018.05.022

Ding C, Li M, Hu Y. High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int. J. Biol. Macromol. 2018;117:72-7. doi:10.1016/j.ijbiomac.2018

Silva DF, Hergesel LM, Campioni TS, Carvalho AFA, Oliva-Neto P. Evaluation of different biological and chemical treatments in agroindustrial residues for the production of fungal glucanases and xylanases. Process Biochem. 2018;67:29-37. doi:10.1016/j.procbio.2018.02.008

McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG. Purification and characterisation of a β-1,4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl. Biochem. Biotechnol. 2013;172(4):1747-62. doi:10.1007/s12010-013-0640-1

Yegin S, Altinel B, Tuluk K. A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: effects on dough rheology and bread quality. Food Hydrocoll. 2018;81:389-97. doi:10.1016/j.foodhyd.2018.03.012

Elgharbi F, Hmida-Sayari A, Zaafouri Y, Bejar S. Expression of an Aspergillus niger xylanase in yeast: application in breadmaking and in vitro digestion. Int. J. Biol. Macromol. 2015;79(1):103-9. doi:10.1016/j.ijbiomac.2015.04.053

Cunha CCQB, Gama AR, Cintra LC, Bataus LAM, Ulhoa CJ. Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris. PLoS ONE. 2018;13(2). doi:10.1371/journal.pone.0192996

Published

12/18/2019

How to Cite

dos Santos, L. M., & Orlandelli, R. C. (2019). Fungal xylanases: use of wheat bran in fermentative processes and baking. Evidence, 19(2), 243–258. https://doi.org/10.18593/eba.v19i2.21819