Selenium in seed germination, development and nutrient accumulation in in vitro dragon fruit seedlings (Hylocereus Costaricensis

Authors

  • Sarah Dias Azevedo Universidade Federal do Ceará/Mestranda https://orcid.org/0000-0002-5105-1794
  • Gabrielen de Maria Gomes Dias Universidade Federal do Ceará/Professora Visitante
  • Márcio Cleber de Medeiros Corrêa Universidade Federal do Ceará/Docente
  • Antônio Mateus Pinheiro Universidade Federal do Ceará/Mestrando

DOI:

https://doi.org/10.18593/evid.34242

Keywords:

Selenate, Tisue culture, Pitaya

Abstract

The plant tissue culture technique can be an effective tool for propagating the pitai tree, since through it the seedlings are multiplied in large quantities, producing clones identical to the mother plant, free of pathogens and in a short period of time. The work was carried out with the objective of evaluating the germination of pitaya seeds (Hylocereus costaricensis) grown in vitro with added selenium and the development of resulting seedlings. Pital seeds (Hylocereus costaricensis) were used inoculated in MS medium added with sodium selenate (Na2SeO4) at concentrations 0.0; 28.0; 34.0; 40.0; 46.0 and 52.0 μmol L-1, with 25 repetitions. Furthermore, 10 mg L-1 of BAP and 0.1 mg L-1 of NAA were added to the selenium treatments. The experiment was carried out in a completely randomized design and the tubes were kept in a growth room for 60 days. The parameters evaluated were: germination rate, seedling length, number of cladodes, number of roots and cladode length (cm). Element quantification was performed with inductively coupled plasma (ICPMS). Data were evaluated using polynomial regression curves. All statistical analyzes were performed using the R Studio software. The inclusion of sodium selenate in the culture medium provided an improvement in the germination rate, number of cladodes, cladode length and seedling length of H. costaricensis. However, with the exception of the number of cladodes, all other phylotechnical parameters evaluated appeared to have better development with estimated concentrations lower than 28 µmol L-1 (lowest concentration used), indicating that at lower doses the plants would have better development. Furthermore, the availability of selenium in the culture medium was proportional to its absorption in H. costaricensis seedlings and the addition of Se in the MS medium affected nutrient absorption by H. costaricensis.

Downloads

Download data is not yet available.

References

Afonso, M. V., Paranhos, J. T., Tabaldi, L. A., & Soriani, H. H. (2018). Germinação in vitro de sementes e parâmetros morfofisiológicos de microestacas de Tabernaemontana catharinensis A. DC. Iheringia, Série Botânica, 73(1), 39–45. https://doi.org/10.21826/2446-8231201873105

Almeida, J. P. M. de, Silva, J. G. da, Gomes, S. A. M., Prado, M. R. V., & Moraes, M. F. de. (2019). Selênio na germinação e desenvolvimento inicial de soja e milho. Revista Panorâmica online, 3(0). https://periodicoscientificos.ufmt.br/revistapanoramica/index.php/revistapanoramica/article/view/1098

Araujo, M. A. de, Melo, A. A. R. de, Silva, V. M., & Reis, A. R. dos. (2023). Selenium enhances ROS scavenging systems and sugar metabolism increasing growth of sugarcane plants. Plant Physiology and Biochemistry, 201, 107798. https://doi.org/10.1016/j.plaphy.2023.107798

Barillas, J. R. V., Quinn, C. F., & Pilon-Smits, E. A. H. (2011). Selenium Accumulation in Plants—Phytotechnological Applications and Ecological Implications. International Journal of Phytoremediation, 13(sup1), 166–178. https://doi.org/10.1080/15226514.2011.568542

Bian, Z., Lei, B., Cheng, R., Wang, Y., Li, T., & Yang, Q. (2020). Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra. Journal of Integrative Agriculture, 19(1), 133–144. https://doi.org/10.1016/S2095-3119(19)62775-9

Cabral Gouveia, G. C., Galindo, F. S., Dantas Bereta Lanza, M. G., Caroline da Rocha Silva, A., Pereira de Brito Mateus, M., Souza da Silva, M., Rimoldi Tavanti, R. F., Tavanti, T. R., Lavres, J., & Reis, A. R. dos. (2020). Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety, 202, 110916. https://doi.org/10.1016/j.ecoenv.2020.110916

Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., Díaz, P., López, C., Roca, W. M., & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology – Plant, 52(5), 461–478. https://doi.org/10.1007/s11627-016-9776-3

Cheng, B., Wang, C., Yue, L., Chen, F., Cao, X., Lan, Q., Liu, T., & Wang, Z. (2023). Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis. NanoImpact, 29, 100449. https://doi.org/10.1016/j.impact.2022.100449

Cipriano, P. E., Silva, R. F. da, Lima, F. R. D. de, Oliveira, C. de, Lima, A. B. de, Celante, G., Santos, A. A. dos, Archilha, M. V. L. R., Pinatto-Botelho, M. F., Faquin, V., & Guilherme, L. R. G. (2022). Selenium biofortification via soil and its effect on plant metabolism and mineral content of sorghum plants. Journal of Food Composition and Analysis, 109, 104505. https://doi.org/10.1016/j.jfca.2022.104505

Cipriano, P. E., Siueia Júnior, M., Souza, R. R., Silva, D. F., Silva, R. F., Faquin, V., Souza Silva, M. L., & Guilherme, L. R. G. (2022). Macronutrients content of radishes and the influence of biofortification with selenium. Scientia Horticulturae, 296, 110908. https://doi.org/10.1016/j.scienta.2022.110908

Considine, M. J., & Foyer, C. H. (2021). Stress effects on the reactive oxygen species-dependent regulation of plant growth and development. Journal of Experimental Botany, 72(16), 5795–5806. https://doi.org/10.1093/jxb/erab265

Domokos-Szabolcsy, É., Alla, N. A., Alshaal, T., Sztrik, A., Márton, L., & El-Ramady, H. (2014). In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. International Journal of Horticultural Science, 20(3-4). https://doi.org/10.31421/ijhs/20/3-4/1146

El-Badri, A. M., Batool, M., Wang, C., Hashem, A. M., Tabl, K. M., Nishawy, E., Kuai, J., Zhou, G., & Wang, B. (2021). Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety, 225, 112695. https://doi.org/10.1016/j.ecoenv.2021.112695

Filek, M., Zembala, M., Kornaś, A., Walas, S., Mrowiec, H., & Hartikainen, H. (2010). The uptake and translocation of macro- and microelements in rape and wheat seedlings as affected by selenium supply level. Plant and Soil, 336(1-2), 303–312. https://doi.org/10.1007/s11104-010-0481-4

Golubkina, N., Kekina, H., & Caruso, G. (2018). Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants, 7(4), 80. https://doi.org/10.3390/plants7040080

González-Morales, S., Pérez-Labrada, F., García-Enciso, E., Leija-Martínez, P., Medrano-Macías, J., Dávila-Rangel, I., Juárez-Maldonado, A., Rivas-Martínez, E., & Benavides-Mendoza, A. (2017). Selenium and Sulfur to Produce Allium Functional Crops. Molecules, 22(4), 558. https://doi.org/10.3390/molecules22040558

Hua, Q., Chen, P., Liu, W., Ma, Y., Liang, R., Wang, L., Wang, Z., Hu, G., & Qin, Y. (2015). A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell, Tissue and Organ Culture (PCTOC), 120(2), 741–745. https://doi.org/10.1007/s11240-014-0643-9

Ibrahim, S. R. M., Mohamed, G. A., Khedr, A. I. M., Zayed, M. F., & El-Kholy, A. A.-E. S. (2018). Hylocereus: Beneficial phytochemicals, nutritional importance, and biological relevance-A review. Journal of Food Biochemistry, 42(2), e12491. https://doi.org/10.1111/jfbc.12491

Khai, H. D., Hiep, P. P. M., Tung, H. T., Phong, T. H., Mai, N. T. N., Luan, V. Q., Cuong, D. M., Vinh, B. V. T., & Nhut, D. T. (2023). Selenium nanoparticles promote adventitious rooting without callus formation at the base of passion fruit cuttings via hormonal homeostasis changes. Scientia Horticulturae, 323, 112485. https://doi.org/10.1016/j.scienta.2023.112485

Khai, H. D., Mai, N. T. N., Tung, H. T., Luan, V. Q., Cuong, D. M., Ngan, H. T. M., Chau, N. H., Buu, N. Q., Vinh, N. Q., Dung, D. M., & Nhut, D. T. (2022). Selenium nanoparticles as in vitro rooting agent, regulates stomata closure and antioxidant activity of gerbera to tolerate acclimatization stress. Plant Cell, Tissue and Organ Culture (PCTOC), 150(1), 113–128. https://doi.org/10.1007/s11240-022-02250-3

Kurek, K., Plitta-Michalak, B., & Ratajczak, E. (2019). Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants, 8(6), 174. https://doi.org/10.3390/plants8060174

Lima, D. de C., Mendes, N. V. B., Corrêa, M. C. de M., Taniguchi, C. A. K., Queiroz, R. F., & Natale, W. (2019). Growth and nutrient accumulation in the aerial part of red Pitaya (Hylocereus sp.). Revista Brasileira de Fruticultura, 41(5). https://doi.org/10.1590/0100-29452019030

Lima, D. de C., Mendes, N., Veloso B., Diógenes, M. F. S., Corrêa, M. C. D. M., Natale, W., & Taniguchi, C. A. K. (2021). Initial growth and nutrient accumulation in pitaya plants at different phenological stages1. Revista Caatinga, 34(3), 720–727. https://doi.org/10.1590/1983-21252021v34n324rc

Mahmod, N. H., Lema, A. A., Kamarudin, S. F., Shari, N., Abdullah, T. A., & Dogara, A. M. (2021). Effect of Plant Growth Regulators, Basal Media Strength and Carbon Sources on Hylocereus Costaricensis (Red Dragon Fruit) Seed Germination. Eurasian Journal of Science and Engineering, 7(2). https://doi.org/10.23918/eajse.v7i2p149

Martins, J. P. R., Conde, L. T., Falqueto, A. R., & Gontijo, A. B. P. L. (2021). Selenium biofortified Aechmea blanchetiana (Bromeliaceae) can resist lead-induced toxicity during in vitro culture. Acta Physiologiae Plantarum, 43(11), 149. https://doi.org/10.1007/s11738-021-03323-0

Moulick, D., Ghosh, D., & Chandra Santra, S. (2016). Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiology and Biochemistry, 109, 571–578. https://doi.org/10.1016/j.plaphy.2016.11.004

Moura, R. C., Santos, J. P. dos, Assis, R. M. A. de, Rocha, J. P. M., Leite, J. J. F., Pereira, F. D., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2023). Aplicação de fontes de selenito e selenato na micropropagação de Digitalis mariana Boiss. ssp. Heywoodii. Research, Society and Development, 12(1), e17112139703. https://doi.org/10.33448/rsd-v12i1.39703

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ramos, D. P., Chan, G. A. H., Dias, M. A. R., Silva, D. V., Sousa, P. L. R., Júnior, N. R. M., Leal, T. H. V., Oliveira, W. T. M. de, Dias, D. S., Cavallini, G. S., Laia Nascimento, V. de, & Fidelis, R. R. (2023). Effect of foliar application with selenium on biofortification and physiological attributes of irrigated rice cultivars. Journal of Food Composition and Analysis, 123, 105534. https://doi.org/10.1016/j.jfca.2023.105534

Reis, H. P. G., Barcelos, J. P. de Q., Junior, E. F., Santos, E. F., Silva, V. M., Moraes, M. F., Putti, F. F., & Reis, A. R. dos. (2018). Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science, 79, 508–515. https://doi.org/10.1016/j.jcs.2018.01.004

Roychowdhury, R., Khan, M. H., & Choudhury, S. (2019). Physiological and Molecular Responses for Metalloid Stress in Rice–A Comprehensive Overview. Em Advances in Rice Research for Abiotic Stress Tolerance (p. 341–369). Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00016-2

Ruths, R., Bonome, L. T. da S., Tomazi, Y., Siqueira, D. J., Moura, G. S., & Lima, C. S. M. (2019). Influência da temperatura e luminosidade na germinação de sementes das espécies: Selenicereus setaceus, Hylocereus undatus e Hylocereus polyrhizus. Revista de Ciências Agroveterinárias, 18(2). https://doi.org/10.5965/223811711812019194

Santiago, F. E. M., Silva, M. L. D. S., Ribeiro, F. D. O., Cipriano, P. E., & Guilherme, L. R. G. (2018). Influence of sulfur on selenium absorption in strawberry. Acta Scientiarum. Agronomy, 40(1), 35780. https://doi.org/10.4025/actasciagron.v40i1.35780

Seliem, M. K., Abdalla, N., & El-Ramady, H. R. (2020). Response of Phalaenopsis Orchid to Selenium and Bio-Nano-Selenium: In Vitro Rooting and Acclimatization. Environment, Biodiversity and Soil Security, 4(Issue 2020), 277–290. https://doi.org/10.21608/JENVBS.2020.42806.1107

Sheng, W., Sundarasekar, J., Sathasivam, K., & Subramaniam, S. (2016). Effects of plant growth regulators on seed germination and callus induction of hylocereus costaricensis. Pakistan Journal of Botany, 48(3), 977–982. http://inis.iaea.org/search/search.aspx?orig_q=RN:47116081

Singh, R., Upadhyay, A. K., & Singh, D. P. (2018). Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicology and Environmental Safety, 148, 105–113. https://doi.org/10.1016/J.ECOENV.2017.10.008

Singh, Y., Kumar, U., Panigrahi, S., Balyan, P., Mehla, S., Sihag, P., Sagwal, V., Singh, K. P., White, J. C., & Dhankher, O. P. (2023). Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. Plant Physiology and Biochemistry, 203, 108004. https://doi.org/10.1016/j.plaphy.2023.108004

Souza, A. F. C., Martins, J. P. R., Gontijo, A. B. P. L., & Falqueto, A. R. (2019). Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). Photosynthetica, 57(4), 931–941. https://doi.org/10.32615/PS.2019.105

Stefanel, C. M., Reiniger, L. R. S., Serrote, C. M. L., & Ziegler, A. C. F. (2022). Ácido naftalenoacético e cinetina na multiplicação in vitro de Eugenia involucrata. Pesquisa Florestal Brasileira, 42, 1–5. https://doi.org/10.4336/2022.pfb.42e201902079

Teixeira, F. R. M. (2017). Análise multielementar de alimentos por espetrometria de massa com plasma acoplado indutivamente. [Tese de Doutorado, Universidade de Coimbra]. https://hdl.handle.net/10316/83180

Tomas, M. da G., Rodrigues, L. J., Almeida Lobo, F. de, Takeuchi, K. P., Paula, N. R. F. de, Pinto, D. M., Nhantumbo, N., Pizzatto, M., Oualmakran, Y., Machado, G. G. L., & Boas, E. V. de B. V. (2023). Physicochemical characteristics and volatile profile of pitaya (Selenicereus setaceus). South African Journal of Botany, 154, 88–97. https://doi.org/10.1016/j.sajb.2023.01.020

Ulsenheimer, I., & Hojo, E. T. D. (2020). Mudas de pitaya propagadas em diferentes tamanhos de cladódios. Cultivo do saber, 13, 87–95. https://cultivandosaber.fag.edu.br/index.php/cultivando/article/view/999

White, P. J. (2018). Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA) – General Subjects, 1862(11), 2333–2342. https://doi.org/10.1016/j.bbagen.2018.05.006

Published

09/11/2024

How to Cite

Azevedo, S. D., Dias, G. de M. G., Corrêa, M. C. de M., & Pinheiro, A. M. (2024). Selenium in seed germination, development and nutrient accumulation in in vitro dragon fruit seedlings (Hylocereus Costaricensis. Evidence, 24, e34242. https://doi.org/10.18593/evid.34242

Issue

Section

Biosciences