Selenium in seed germination, development and nutrient accumulation in in vitro dragon fruit seedlings (Hylocereus Costaricensis
DOI:
https://doi.org/10.18593/evid.34242Keywords:
Selenate, Tisue culture, PitayaAbstract
The plant tissue culture technique can be an effective tool for propagating the pitai tree, since through it the seedlings are multiplied in large quantities, producing clones identical to the mother plant, free of pathogens and in a short period of time. The work was carried out with the objective of evaluating the germination of pitaya seeds (Hylocereus costaricensis) grown in vitro with added selenium and the development of resulting seedlings. Pital seeds (Hylocereus costaricensis) were used inoculated in MS medium added with sodium selenate (Na2SeO4) at concentrations 0.0; 28.0; 34.0; 40.0; 46.0 and 52.0 μmol L-1, with 25 repetitions. Furthermore, 10 mg L-1 of BAP and 0.1 mg L-1 of NAA were added to the selenium treatments. The experiment was carried out in a completely randomized design and the tubes were kept in a growth room for 60 days. The parameters evaluated were: germination rate, seedling length, number of cladodes, number of roots and cladode length (cm). Element quantification was performed with inductively coupled plasma (ICPMS). Data were evaluated using polynomial regression curves. All statistical analyzes were performed using the R Studio software. The inclusion of sodium selenate in the culture medium provided an improvement in the germination rate, number of cladodes, cladode length and seedling length of H. costaricensis. However, with the exception of the number of cladodes, all other phylotechnical parameters evaluated appeared to have better development with estimated concentrations lower than 28 µmol L-1 (lowest concentration used), indicating that at lower doses the plants would have better development. Furthermore, the availability of selenium in the culture medium was proportional to its absorption in H. costaricensis seedlings and the addition of Se in the MS medium affected nutrient absorption by H. costaricensis.
Downloads
References
Afonso, M. V., Paranhos, J. T., Tabaldi, L. A., & Soriani, H. H. (2018). Germinação in vitro de sementes e parâmetros morfofisiológicos de microestacas de Tabernaemontana catharinensis A. DC. Iheringia, Série Botânica, 73(1), 39–45. https://doi.org/10.21826/2446-8231201873105
Almeida, J. P. M. de, Silva, J. G. da, Gomes, S. A. M., Prado, M. R. V., & Moraes, M. F. de. (2019). Selênio na germinação e desenvolvimento inicial de soja e milho. Revista Panorâmica online, 3(0). https://periodicoscientificos.ufmt.br/revistapanoramica/index.php/revistapanoramica/article/view/1098
Araujo, M. A. de, Melo, A. A. R. de, Silva, V. M., & Reis, A. R. dos. (2023). Selenium enhances ROS scavenging systems and sugar metabolism increasing growth of sugarcane plants. Plant Physiology and Biochemistry, 201, 107798. https://doi.org/10.1016/j.plaphy.2023.107798
Barillas, J. R. V., Quinn, C. F., & Pilon-Smits, E. A. H. (2011). Selenium Accumulation in Plants—Phytotechnological Applications and Ecological Implications. International Journal of Phytoremediation, 13(sup1), 166–178. https://doi.org/10.1080/15226514.2011.568542
Bian, Z., Lei, B., Cheng, R., Wang, Y., Li, T., & Yang, Q. (2020). Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra. Journal of Integrative Agriculture, 19(1), 133–144. https://doi.org/10.1016/S2095-3119(19)62775-9
Cabral Gouveia, G. C., Galindo, F. S., Dantas Bereta Lanza, M. G., Caroline da Rocha Silva, A., Pereira de Brito Mateus, M., Souza da Silva, M., Rimoldi Tavanti, R. F., Tavanti, T. R., Lavres, J., & Reis, A. R. dos. (2020). Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicology and Environmental Safety, 202, 110916. https://doi.org/10.1016/j.ecoenv.2020.110916
Chavarriaga-Aguirre, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., Díaz, P., López, C., Roca, W. M., & Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular & Developmental Biology – Plant, 52(5), 461–478. https://doi.org/10.1007/s11627-016-9776-3
Cheng, B., Wang, C., Yue, L., Chen, F., Cao, X., Lan, Q., Liu, T., & Wang, Z. (2023). Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis. NanoImpact, 29, 100449. https://doi.org/10.1016/j.impact.2022.100449
Cipriano, P. E., Silva, R. F. da, Lima, F. R. D. de, Oliveira, C. de, Lima, A. B. de, Celante, G., Santos, A. A. dos, Archilha, M. V. L. R., Pinatto-Botelho, M. F., Faquin, V., & Guilherme, L. R. G. (2022). Selenium biofortification via soil and its effect on plant metabolism and mineral content of sorghum plants. Journal of Food Composition and Analysis, 109, 104505. https://doi.org/10.1016/j.jfca.2022.104505
Cipriano, P. E., Siueia Júnior, M., Souza, R. R., Silva, D. F., Silva, R. F., Faquin, V., Souza Silva, M. L., & Guilherme, L. R. G. (2022). Macronutrients content of radishes and the influence of biofortification with selenium. Scientia Horticulturae, 296, 110908. https://doi.org/10.1016/j.scienta.2022.110908
Considine, M. J., & Foyer, C. H. (2021). Stress effects on the reactive oxygen species-dependent regulation of plant growth and development. Journal of Experimental Botany, 72(16), 5795–5806. https://doi.org/10.1093/jxb/erab265
Domokos-Szabolcsy, É., Alla, N. A., Alshaal, T., Sztrik, A., Márton, L., & El-Ramady, H. (2014). In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. International Journal of Horticultural Science, 20(3-4). https://doi.org/10.31421/ijhs/20/3-4/1146
El-Badri, A. M., Batool, M., Wang, C., Hashem, A. M., Tabl, K. M., Nishawy, E., Kuai, J., Zhou, G., & Wang, B. (2021). Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety, 225, 112695. https://doi.org/10.1016/j.ecoenv.2021.112695
Filek, M., Zembala, M., Kornaś, A., Walas, S., Mrowiec, H., & Hartikainen, H. (2010). The uptake and translocation of macro- and microelements in rape and wheat seedlings as affected by selenium supply level. Plant and Soil, 336(1-2), 303–312. https://doi.org/10.1007/s11104-010-0481-4
Golubkina, N., Kekina, H., & Caruso, G. (2018). Yield, Quality and Antioxidant Properties of Indian Mustard (Brassica juncea L.) in Response to Foliar Biofortification with Selenium and Iodine. Plants, 7(4), 80. https://doi.org/10.3390/plants7040080
González-Morales, S., Pérez-Labrada, F., García-Enciso, E., Leija-Martínez, P., Medrano-Macías, J., Dávila-Rangel, I., Juárez-Maldonado, A., Rivas-Martínez, E., & Benavides-Mendoza, A. (2017). Selenium and Sulfur to Produce Allium Functional Crops. Molecules, 22(4), 558. https://doi.org/10.3390/molecules22040558
Hua, Q., Chen, P., Liu, W., Ma, Y., Liang, R., Wang, L., Wang, Z., Hu, G., & Qin, Y. (2015). A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell, Tissue and Organ Culture (PCTOC), 120(2), 741–745. https://doi.org/10.1007/s11240-014-0643-9
Ibrahim, S. R. M., Mohamed, G. A., Khedr, A. I. M., Zayed, M. F., & El-Kholy, A. A.-E. S. (2018). Hylocereus: Beneficial phytochemicals, nutritional importance, and biological relevance-A review. Journal of Food Biochemistry, 42(2), e12491. https://doi.org/10.1111/jfbc.12491
Khai, H. D., Hiep, P. P. M., Tung, H. T., Phong, T. H., Mai, N. T. N., Luan, V. Q., Cuong, D. M., Vinh, B. V. T., & Nhut, D. T. (2023). Selenium nanoparticles promote adventitious rooting without callus formation at the base of passion fruit cuttings via hormonal homeostasis changes. Scientia Horticulturae, 323, 112485. https://doi.org/10.1016/j.scienta.2023.112485
Khai, H. D., Mai, N. T. N., Tung, H. T., Luan, V. Q., Cuong, D. M., Ngan, H. T. M., Chau, N. H., Buu, N. Q., Vinh, N. Q., Dung, D. M., & Nhut, D. T. (2022). Selenium nanoparticles as in vitro rooting agent, regulates stomata closure and antioxidant activity of gerbera to tolerate acclimatization stress. Plant Cell, Tissue and Organ Culture (PCTOC), 150(1), 113–128. https://doi.org/10.1007/s11240-022-02250-3
Kurek, K., Plitta-Michalak, B., & Ratajczak, E. (2019). Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants, 8(6), 174. https://doi.org/10.3390/plants8060174
Lima, D. de C., Mendes, N. V. B., Corrêa, M. C. de M., Taniguchi, C. A. K., Queiroz, R. F., & Natale, W. (2019). Growth and nutrient accumulation in the aerial part of red Pitaya (Hylocereus sp.). Revista Brasileira de Fruticultura, 41(5). https://doi.org/10.1590/0100-29452019030
Lima, D. de C., Mendes, N., Veloso B., Diógenes, M. F. S., Corrêa, M. C. D. M., Natale, W., & Taniguchi, C. A. K. (2021). Initial growth and nutrient accumulation in pitaya plants at different phenological stages1. Revista Caatinga, 34(3), 720–727. https://doi.org/10.1590/1983-21252021v34n324rc
Mahmod, N. H., Lema, A. A., Kamarudin, S. F., Shari, N., Abdullah, T. A., & Dogara, A. M. (2021). Effect of Plant Growth Regulators, Basal Media Strength and Carbon Sources on Hylocereus Costaricensis (Red Dragon Fruit) Seed Germination. Eurasian Journal of Science and Engineering, 7(2). https://doi.org/10.23918/eajse.v7i2p149
Martins, J. P. R., Conde, L. T., Falqueto, A. R., & Gontijo, A. B. P. L. (2021). Selenium biofortified Aechmea blanchetiana (Bromeliaceae) can resist lead-induced toxicity during in vitro culture. Acta Physiologiae Plantarum, 43(11), 149. https://doi.org/10.1007/s11738-021-03323-0
Moulick, D., Ghosh, D., & Chandra Santra, S. (2016). Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiology and Biochemistry, 109, 571–578. https://doi.org/10.1016/j.plaphy.2016.11.004
Moura, R. C., Santos, J. P. dos, Assis, R. M. A. de, Rocha, J. P. M., Leite, J. J. F., Pereira, F. D., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2023). Aplicação de fontes de selenito e selenato na micropropagação de Digitalis mariana Boiss. ssp. Heywoodii. Research, Society and Development, 12(1), e17112139703. https://doi.org/10.33448/rsd-v12i1.39703
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Ramos, D. P., Chan, G. A. H., Dias, M. A. R., Silva, D. V., Sousa, P. L. R., Júnior, N. R. M., Leal, T. H. V., Oliveira, W. T. M. de, Dias, D. S., Cavallini, G. S., Laia Nascimento, V. de, & Fidelis, R. R. (2023). Effect of foliar application with selenium on biofortification and physiological attributes of irrigated rice cultivars. Journal of Food Composition and Analysis, 123, 105534. https://doi.org/10.1016/j.jfca.2023.105534
Reis, H. P. G., Barcelos, J. P. de Q., Junior, E. F., Santos, E. F., Silva, V. M., Moraes, M. F., Putti, F. F., & Reis, A. R. dos. (2018). Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. Journal of Cereal Science, 79, 508–515. https://doi.org/10.1016/j.jcs.2018.01.004
Roychowdhury, R., Khan, M. H., & Choudhury, S. (2019). Physiological and Molecular Responses for Metalloid Stress in Rice–A Comprehensive Overview. Em Advances in Rice Research for Abiotic Stress Tolerance (p. 341–369). Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00016-2
Ruths, R., Bonome, L. T. da S., Tomazi, Y., Siqueira, D. J., Moura, G. S., & Lima, C. S. M. (2019). Influência da temperatura e luminosidade na germinação de sementes das espécies: Selenicereus setaceus, Hylocereus undatus e Hylocereus polyrhizus. Revista de Ciências Agroveterinárias, 18(2). https://doi.org/10.5965/223811711812019194
Santiago, F. E. M., Silva, M. L. D. S., Ribeiro, F. D. O., Cipriano, P. E., & Guilherme, L. R. G. (2018). Influence of sulfur on selenium absorption in strawberry. Acta Scientiarum. Agronomy, 40(1), 35780. https://doi.org/10.4025/actasciagron.v40i1.35780
Seliem, M. K., Abdalla, N., & El-Ramady, H. R. (2020). Response of Phalaenopsis Orchid to Selenium and Bio-Nano-Selenium: In Vitro Rooting and Acclimatization. Environment, Biodiversity and Soil Security, 4(Issue 2020), 277–290. https://doi.org/10.21608/JENVBS.2020.42806.1107
Sheng, W., Sundarasekar, J., Sathasivam, K., & Subramaniam, S. (2016). Effects of plant growth regulators on seed germination and callus induction of hylocereus costaricensis. Pakistan Journal of Botany, 48(3), 977–982. http://inis.iaea.org/search/search.aspx?orig_q=RN:47116081
Singh, R., Upadhyay, A. K., & Singh, D. P. (2018). Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicology and Environmental Safety, 148, 105–113. https://doi.org/10.1016/J.ECOENV.2017.10.008
Singh, Y., Kumar, U., Panigrahi, S., Balyan, P., Mehla, S., Sihag, P., Sagwal, V., Singh, K. P., White, J. C., & Dhankher, O. P. (2023). Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. Plant Physiology and Biochemistry, 203, 108004. https://doi.org/10.1016/j.plaphy.2023.108004
Souza, A. F. C., Martins, J. P. R., Gontijo, A. B. P. L., & Falqueto, A. R. (2019). Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). Photosynthetica, 57(4), 931–941. https://doi.org/10.32615/PS.2019.105
Stefanel, C. M., Reiniger, L. R. S., Serrote, C. M. L., & Ziegler, A. C. F. (2022). Ácido naftalenoacético e cinetina na multiplicação in vitro de Eugenia involucrata. Pesquisa Florestal Brasileira, 42, 1–5. https://doi.org/10.4336/2022.pfb.42e201902079
Teixeira, F. R. M. (2017). Análise multielementar de alimentos por espetrometria de massa com plasma acoplado indutivamente. [Tese de Doutorado, Universidade de Coimbra]. https://hdl.handle.net/10316/83180
Tomas, M. da G., Rodrigues, L. J., Almeida Lobo, F. de, Takeuchi, K. P., Paula, N. R. F. de, Pinto, D. M., Nhantumbo, N., Pizzatto, M., Oualmakran, Y., Machado, G. G. L., & Boas, E. V. de B. V. (2023). Physicochemical characteristics and volatile profile of pitaya (Selenicereus setaceus). South African Journal of Botany, 154, 88–97. https://doi.org/10.1016/j.sajb.2023.01.020
Ulsenheimer, I., & Hojo, E. T. D. (2020). Mudas de pitaya propagadas em diferentes tamanhos de cladódios. Cultivo do saber, 13, 87–95. https://cultivandosaber.fag.edu.br/index.php/cultivando/article/view/999
White, P. J. (2018). Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA) – General Subjects, 1862(11), 2333–2342. https://doi.org/10.1016/j.bbagen.2018.05.006
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Evidence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Statement
The authors retain the copyrights and grant the Journal the right of the first publication, with the work being simultaneously licensed by a Creative Commons - Attribution - Non-Commercial 4.0 International License.