Spatial analysis of soil micronutrients in an area of extensive pasture in the southeast of the State of Tocantins

Authors

DOI:

https://doi.org/10.18593/evid.32855

Keywords:

Variability, Nutrients, Soil

Abstract

The use of geostatistical tools in Precision Agriculture allows for the identification of heterogeneous zones, contributing to soil and crop management, production costs, and potential environmental is

The variability of micronutrients in the soil is influenced by geology, biological factors and anthropogenic factors that can affect the lack or excess of these in the soil, which despite being required in smaller quantities are essential for plant development. The aim of this study was to assess the spatial behaviour of micronutrients in an extensive pasture area in the southeast of the state of Tocantins. The experiment was conducted at the Federal Institute of Tocantins, Dianópolis Campus, Animal Production Sector, located in the municipality of Dianópolis (TO). The soil evaluated was classified as dystrophic Haplic Cambisol and has a history of extensive pasture for more than 10 years. Soil samples were collected manually at a number of georeferenced sampling points (25x25m) within the study area (approximately 2 ha), totalling 30 composite samples, at a depth of 0-20 cm. Clay, pH, OM and micronutrient levels were analyzed from each soil sample: boron (B), iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn), and the data was subjected to analysis geospatial by software Surfer. The variability of the attributes classified according to their coefficient of variation (CV) showed high values (CV>60%) for Fe, Mn and Zn, medium values (15-60%) for Clay, OM, B and Cu and low values (<15%) for pH. Therefore, the attributes researched presented a low to high degree of spatial dependence. However, it was possible to map the chemical attributes of the soil, where the greatest variability was observed for the micronutrients Zn, Mn and Fe.

sues. This study aims to evaluate the spatial variability and relationship between micronutrients in a fallow area in the southeastern state of Tocantins. The experiment was conducted at the Federal Institute of Tocantins, Campus Dianópolis, Animal Production Sector, located in the municipality of Dianópolis (TO). The soil evaluated was classified as dystrophic Haplic Cambisol and has a history of native pasture for over 10 years. The soil chemical attributes evaluated were clay, sand, silt, pH, and micronutrient contents: boron (B), iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn). The contents of clay, boron, copper, and iron showed low spatial variability, while Mn levels were classified as moderate and Zn as high variability. However, it is important to note that observed levels of Cu, Fe, Mn, and Zn micronutrients were above the critical limit (<0.2; <4.5; <2.5; and <0.6, respectively). The pH and clay content attributes are correlated and influence the availability and spatial distribution of micronutrients.

Downloads

Download data is not yet available.

References

Andriotti, J. L. S. (2004). Fundamentos de Estatística e Geoestatística. (1st ed.). Editora Unisinos.

Bernardi, A. C. de C., Naime, J. de M., Resende, A. V., Bassoi, L. H., & Inamasu, R. Y. (Eds.). (2014). Agricultura de precisão: Resultados de um novo olhar. (1st ed.). Embrapa.

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x

Carneiro, J. S. da S., Santos, A. C. M. dos, Fidelis, R. R., Neto, S. P. da S., Santos, A. C. dos, & Silva, R. R. da. (2016). Diagnóstico e manejo da variabilidade espacial da fertilidade do solo no cerrado do Piauí. Revista de Ciências Agro-Ambientais, 14(2), Article 2. https://doi.org/10.5327/rcaa.v14i2.1469

Cerri, D. G. P., & Magalhães, P. S. G. (2012). Correlation of physical and chemical attributes of soil with sugarcane yield. Pesquisa Agropecuária Brasileira, 47(4), 613-620. https://doi.org/10.1590/S0100-204X2012000400018

Cherubin, M. R., Santi, A. L., Eitelwein, M. T., Menegol, D. R., Ros, C. O. da, Pias, O. H. de C., & Berghetti, J. (2014). Eficiência de malhas amostrais utilizadas na caracterização da variabilidade espacial de fósforo e potássio. Ciência Rural, 44, 425-432. https://doi.org/10.1590/S0103-84782014000300007

Cruz, J. S., Assis Júnior, R. N., Matias, S. S. R., & Camacho-Tamayo, J. H. (2011). Spatial variability of an Alfisol cultivated with sugarcane. Ciencia e Investigación Agraria, 38(1), 155-164. https://doi.org/10.4067/S0718-16202011000100015

Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1-2, 100007. https://doi.org/10.1016/j.indic.2019.100007

Druck, S., Carvalho, M. S., Câmara, G., & Monteiro, A. M. V. (Eds.). (2004). Análise espacial de dados geográficos. (1st ed.). Embrapa Informação Tecnológica.

Gandah, M., Stein, A., Brouwer, J., & Bouma, J. (2000). Dynamics of spatial variability of millet growth and yields at three sites in Niger, West Africa and implications for precision agriculture research. Agricultural Systems, 63(2), 123-140. https://doi.org/10.1016/S0308-521X(99)00076-1

Gelain, E., Bottega, E. L., Motomiya, A. V. de A., & Oliveira, Z. B. de. (2021a). Variabilidade Espacial e correlação dos atributos do solo com produtividade do milho e da soja. Nativa, 9(5), Article 5. https://doi.org/10.31413/nativa.v9i5.11717

Gelain, E., Bottega, E. L., Motomiya, A. V. de A., & Oliveira, Z. B. (2021b). Variabilidade espacial e correlação dos atributos do solo com produtividade do milho e da soja. Nativa, 9(5), Article 5. https://doi.org/10.31413/nativa.v9i5.11717

Gonçalves, A. S. F., Oliveira Neto, S. S. de, & Machado, G. G. (2019). Uso de micronutrientes na agricultura: Efeitos e aplicações. Revista Agronomia Brasileira, 3(3). https://doi.org/10.29372/rab201912

Laurent, C., Bravin, M. N., Crouzet, O., Pelosi, C., Tillard, E., Lecomte, P., & Lamy, I. (2020). Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of The Total Environment, 709, 135927. https://doi.org/10.1016/j.scitotenv.2019.135927

Lawrence, P. G., Roper, W., Morris, T. F., & Guillard, K. (2020). Guiding soil sampling strategies using classical and spatial statistics: A review. Agronomy Journal, 112(1), 493-510. https://doi.org/10.1002/agj2.20048

Lima, J. S. de S., Silva, S. de A., & Silva, J. M. da. (2013). Variabilidade espacial de atributos químicos de um Latossolo Vermelho-Amarelo cultivado em plantio direto. Revista Ciência Agronômica, 44(1), 16-23. https://doi.org/10.1590/S1806-66902013000100003

Little, T. M., & Hills, F. J. (Eds.). (1991). Agricultural experimentation design and analysis. (1st ed.). John Wiley & Sons.

Lobato, E. (2004). Cerrado: Correção do solo e adubação. (2nd ed.). Embrapa Informação Tecnológica.

Maza-Villalobos, S., García-Ramírez, P., Endress, B. A., & Lopez-Toledo, L. (2022). Plant functional traits under cattle grazing and fallow age scenarios in a tropical dry forest of Northwestern Mexico. Basic and Applied Ecology. https://doi.org/10.1016/j.baae.2022.06.006

Negreiros Neto, J. V. D., Santos, A. C. D., Guarnieri, A., Souza, D. J. D. A. T., Daronch, D. J., Dotto, M. A., & Araújo, A. D. S. (2014). Variabilidade espacial de atributos físico-químicos de um Latossolo Vermelho-Amarelo distrófico em sistema plantio direto. Semina: Ciências Agrárias, 35(1), 193. https://doi.org/10.5433/1679-0359.2014v35n1p193

Oliveira, I. A., Campos, M. C. C., Soares, M. D. R., Aquino, R. E., Marques Júnior, J., & Nascimento, E. P. (2013). Variabilidade espacial de atributos físicos em um cambissolo háplico, sob diferentes usos na região sul do Amazonas. Revista Brasileira de Ciência Do Solo, 37(4), 1103-1112. https://doi.org/10.1590/S0100-06832013000400027

Raij, B. van, Andrade, J. C., Cantarella, H., & Quaggio, J. A. (Eds.). (2001). Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico.

Ramzan, S., & Wani, M. A. (2018). Geographic information system and geostatistical techniques to characterize spatial variability of soil micronutrients including toxic metals in an agricultural farm. Communications in Soil Science and Plant Analysis, 49(4), 463-477. https://doi.org/10.1080/00103624.2018.1431264

Robertson, G. P. (2008). GS+: Geostatistics for the environmental sciences [Computer software]. Gamma Design Software, LLC. https://geostatistics.com/

Santos, H. G. dos. (2018). Sistema brasileiro de classificação de solos (5ª ed. rev. e amp.). Embrapa.

Tomaz, P. K., Montaneri, R., Andreotti, M., & Panosso, A. R. (2016). Linear and spatial variability of fodder productive components correlated with micronutrient levels of the soil. Journal of Geospatial Modelling, 2(1), 12. https://doi.org/10.22615/2526-1746-jgm-2.1-5886

Vasu, D., Singh, S. K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V. P., Ramamurthy, V., Lalitha, M., & Kalaiselvi, B. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169, 25-34. https://doi.org/10.1016/j.still.2017.01.006

Downloads

Published

07/10/2024

How to Cite

Cardoso , J. A., Queiroz, L. F. de, Silva, H. D. da, Lages, R. P., Prolo, T. T., Silva, R. J. da, Vale, K. C. L., & Santos, A. C. dos. (2024). Spatial analysis of soil micronutrients in an area of extensive pasture in the southeast of the State of Tocantins. Evidence, 24, e32855. https://doi.org/10.18593/evid.32855

Issue

Section

Innovation