Polissacarídeos fúngicos e seu potencial hipoglicemiante para atuar como adjuvante no tratamento do diabetes mellitus

Autores

  • Gabriel Macêdo Figueroa Universidade Estadual do Sudoeste da Bahia
  • Danilo Nascimento Costa Universidade Estadual do Sudoeste da Bahia
  • Alana Caise dos Anjos Miranda Universidade Estadual de Feira de Santana
  • Gildomar Lima Valasques Júnior Universidade Estadual do Sudoeste da Bahia https://orcid.org/0000-0002-2877-5313
  • Tátilla Putumujú Santana Mendes Universidade Estadual do Sudoeste da Bahia
  • Pâmala Évelin Pires Cedro Universidade Estadual do Sudoeste da Bahia

DOI:

https://doi.org/10.18593/evid.32561

Palavras-chave:

Biotecnologia, Fungos, Hipoglicemiantes

Resumo

Diabetes mellitus é considerado um grave problema de saúde pública, pois afeta milhões de indivíduos e causa inúmeras complicações. Os constantes efeitos adversos das terapias convencionais para diabetes mellitus têm estimulado pesquisas que buscam novas formas de tratamento, prevenção e controle. Polissacarídeos obtidos de fungos são promissores como adjuvantes no controle do diabetes mellitus. Este estudo é uma revisão de literatura que buscou avaliar as propriedades hipoglicemiantes de polissacarídeos obtidos de fungos e compreender os principais mecanismos de ação envolvidos. Os principais mecanismos relatados nos estudos que resultaram na diminuição da glicemia foram a inibição de enzimas digestivas, como α-amilase e α-glicosidase, ação nas vias de sinalização IRS1, PI3K, JNK1, antioxidante, anti-inflamatória, capacidade hipolipidêmica e estimulação da microbiota intestinal.

Downloads

Não há dados estatísticos.

Referências

Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, et al. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer’s Disease. Journal of Diabetes Research. 2020;2020:1-12. DOI: https://doi.org/10.1155/2020/4981814

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice. 2019;157(157):107843. DOI: https://doi.org/10.1016/j.diabres.2019.107843

Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice. 2020;108072. DOI: https://doi.org/10.1016/j.diabres.2020.108072

Vicente-Herrero MT, Ramírez-Iñiguez de la Torre MV, Delgado-Bueno S. Diabetes mellitus and work. Assessment and questionnaires revision. Endocrinologia, Diabetes Y Nutricion. 2019;66(8):520-7. DOI: https://doi.org/10.1016/j.endien.2019.02.007

Jiang X, Meng W, Li L, Meng Z, Wang D. Adjuvant Therapy With Mushroom Polysaccharides for Diabetic Complications. Frontiers in Pharmacology. 2020;11. DOI: https://doi.org/10.3389/fphar.2020.00168

Korolenko TA, Bgatova NP, Vetvicka V. Glucan and Mannan – Two Peas in a Pod. International Journal of Molecular Sciences. 2019;20(13). DOI: https://doi.org/10.3390/ijms20133189

Sánchez OJ, Montoya S, Vargas LM. Polysaccharide production by submerged fermentation. Polysaccharides. Springer, Cham, 2015:451-473. DOI: https://doi.org/10.1007/978-3-319-16298-0_39

Stübiger G, Wuczkowski M, Mancera L, Lopandic K, Sterflinger K, Belgacem O. Characterization of Yeasts and Filamentous Fungi using MALDI Lipid Phenotyping. Journal of Microbiological Methods. 2016;130:27-37. DOI: https://doi.org/10.1016/j.mimet.2016.08.010

Valasques Junior GL, Boffo EF, Santos JDG, Brandão HN, Mascarenhas AJS, Cruz FT, et al. The extraction and characterisation of a polysaccharide from Moniliophthora perniciosa CCMB 0257. Natural Product Research. 2017;31(14):1647-54. DOI: https://doi.org/10.1080/14786419.2017.1285302

Brazilian Society of Diabetes (SBD). Brazilian Diabetes Society Guidelines 2019-2020. Available from: http://www.saude.ba.gov.br/wp-content/uploads/2020/02/Diretrizes-Sociedade-Brasileira-de-Diabetes-2019-2020.pdf

American Diabetes Association. Standards of Medical Care in Diabetes-2019. Journal of Clinical and Applied Research and Education. 2019;42:1-204. DOI: https://doi.org/10.2337/dc19-S007

Meyts P. The insulin receptor and its signal transduction network. Endotext, 2016.

Cheng BW, Lo FS, Wang AM, Hung CM, Huang CY, Ting WH, et al. Autoantibodies against islet cell antigens in children with type 1 diabetes mellitus. Oncotarget, 2018;9(23):16275. DOI: https://doi.org/10.18632/oncotarget.24527

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. The Lancet. 2018;391(10138):2449-62. DOI: https://doi.org/10.1016/S0140-6736(18)31320-5

Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules. 2020;25(8):1987. DOI: https://doi.org/10.3390/molecules25081987

Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine. 2017;15(1). DOI: https://doi.org/10.1186/s12916-017-0901-x

Razavi-Nematollahi L, Ismail-Beigi F. Adverse Effects of Glycemia-Lowering Medications in Type 2 Diabetes. Current Diabetes Reports. 2019;19(11). DOI: https://doi.org/10.1007/s11892-019-1266-7

Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers. 2018;183:91-101. DOI: https://doi.org/10.1016/j.carbpol.2017.12.009

Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International Journal of Biological Macromolecules. 2016;92:37-48. DOI: https://doi.org/10.1016/j.ijbiomac.2016.06.100

Ganesan, Xu. Anti-Diabetic Effects and Mechanisms of Dietary Polysaccharides. Molecules. 2019;24(14):2556. DOI: https://doi.org/10.3390/molecules24142556

Fu Y, Wang L, Jiang G, Ren L, Wang L, Liu X. Anti-Diabetic Activity of Polysaccharides from Auricularia cornea var. Li. Foods. 2022;11(10):1464. DOI: https://doi.org/10.3390/foods11101464

Liu Y, Chen D, You Y, Zeng S, Hu Y, Duan X, et al. Structural characterization and antidiabetic activity of a glucopyranose-rich heteropolysaccharide from Catathelasma ventricosum. Carbohydrate Polymers. 2016;149:399-407. DOI: https://doi.org/10.1016/j.carbpol.2016.04.106

Cao H, Ma S, Guo H, Cui X, Wang S, Zhong X, et al. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. International Journal of Biological Macromolecules. 2019;139:543-9. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.017

Zhao H, Lai Q, Zhang J, Huang C, Jia L. Antioxidant and Hypoglycemic Effects of Acidic-Extractable Polysaccharides from Cordyceps militaris on Type 2 Diabetes Mice. Oxidative Medicine and Cellular Longevity. 2018 Nov 25;2018:1-15. DOI: https://doi.org/10.1155/2018/9150807

Liu R-M, Dai R, Luo Y, Xiao J-H. Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC Complementary and Alternative Medicine. 2019;19(1). DOI: https://doi.org/10.1186/s12906-019-2646-x

Xiao D, Yu S, Xiao J-H. Antioxidant activities of alkali-soluble polysaccharides from medicinal mushroom Cordyceps taii and its chemical characteristics. Biomedical Research-tokyo. 2016.

Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. Journal of Ethnopharmacology. 2017;196:47-57. DOI: https://doi.org/10.1016/j.jep.2016.11.044

Yang S, Qu Y, Zhang H, Xue Z, Liu T, Yang L, et al. Hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. Food & Function. 2020;11(1):424-34. DOI: https://doi.org/10.1039/C9FO02283J

Chen Y, Liu Y, Sarker MdMR, Yan X, Yang C, Zhao L, et al. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate Polymers. 2018;198:452-61. DOI: https://doi.org/10.1016/j.carbpol.2018.06.077

Kou L, Du M, Liu P, Zhang B, Zhang Y, Yang P, et al. Anti-Diabetic and Anti-Nephritic Activities of Grifola frondosa Mycelium Polysaccharides in Diet-Streptozotocin-Induced Diabetic Rats Via Modulation on Oxidative Stress. Applied Biochemistry and Biotechnology. 2019;187(1):310-22. DOI: https://doi.org/10.1007/s12010-018-2803-6

Chen Y, Liu D, Wang D, Lai S, Zhong R, Liu Y, et al. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association. 2019;126:295-302. DOI: https://doi.org/10.1016/j.fct.2019.02.034

Guo W-L, Deng J-C, Pan Y-Y, Xu J-X, Hong J-L, Shi F-F, et al. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. International Journal of Biological Macromolecules. 2020;153:1231-40. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.253

Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomedicine & Pharmacotherapy. 2017;95:1669-77. DOI: https://doi.org/10.1016/j.biopha.2017.09.104

Xue J, Tong S, Wang Z, Liu P. Chemical Characterization and Hypoglycaemic Activities In Vitro of Two Polysaccharides from Inonotus obliquus by Submerged Culture. Molecules. 2018;23(12):3261. DOI: https://doi.org/10.3390/molecules23123261

Liu P, Xue J, Tong S, Dong W, Wu P. Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus. Molecules. 2018;23(8):1948. DOI: https://doi.org/10.3390/molecules23081948

Wang Y, Su N, Hou G, Li J, Ye M. Hypoglycemic and hypolipidemic effects of a polysaccharide from Lachnum YM240 and its derivatives in mice, induced by a high fat diet and low dose STZ. MedChemComm. 2017;8(5):964-74. DOI: https://doi.org/10.1039/C6MD00697C

Chen L, Zhang Y, Sha O, Xu W, Wang S. Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International Journal of Biological Macromolecules. 2016;93(Pt A):1206-9. DOI: https://doi.org/10.1016/j.ijbiomac.2016.09.094

Zheng X, Sun H, Wu L, Kong X, Song Q, Zhu Z. Structural characterization and inhibition on α-glucosidase of the polysaccharides from fruiting bodies and mycelia of Pleurotus eryngii. International Journal of Biological Macromolecules. 2019;156:1512-9. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.199

Liu Y, Wang C, Li J, Li T, Zhang Y, Liang Y, et al. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. The FASEB Journal. 2020;34(1):1065-78. DOI: https://doi.org/10.1096/fj.201901943RR

Yang K, Jin Y, Cai M, He P, Tian B, Guan R, et al. Separation, characterization and hypoglycemic activity in vitro evaluation of a low molecular weight heteropolysaccharide from the fruiting body of Phellinus pini. Food & Function. 2021;12(8):3493-503. DOI: https://doi.org/10.1039/D1FO00297J

Liu Y, Liu Y, Zhang M, Li C, Zhang Z, Liu A, et al. Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-κB pathways. International journal of biological macromolecules. 2020;162:935-45. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.212

Zhang Y, Hu T, Zhou H, Zhang Y, Jin G, Yang Y. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules. 2016;83:126-32. DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.045

Lenzen S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. DOI: https://doi.org/10.1007/s00125-007-0886-7

Zhao H, Li S, Zhang J, Che G, Zhou M, Liu M, et al. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus. Carbohydrate Polymers. 2016;151:1227-34. DOI: https://doi.org/10.1016/j.carbpol.2016.06.058

Berbudi A, Rahmadika N, Cahyadi AI, Ruslami R. Type 2 Diabetes and Its Impact on the Immune System. Current Diabetes Reviews. 2019;16(5). DOI: https://doi.org/10.2174/1573399815666191024085838

Alam F, Shafique Z, Amjad ST, Bin Asad MHH. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytotherapy Research. 2018;33(1):41-54. DOI: https://doi.org/10.1002/ptr.6211

Teng H, Chen L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Critical Reviews in Food Science and Nutrition. 2016;57(16):3438-48. DOI: https://doi.org/10.1080/10408398.2015.1129309

Zhao C, Yang C, Chen M, Lv X, Liu B, Yi L, et al. Regulatory Efficacy of Brown Seaweed Lessonia nigrescens Extract on the Gene Expression Profile and Intestinal Microflora in Type 2 Diabetic Mice. Molecular Nutrition & Food Research. 2018;62(4). DOI: https://doi.org/10.1002/mnfr.201700730

Fu X, Cao C, Ren B, Zhang B, Huang Q, Li C. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydrate Polymers. 2018;183:230-9. DOI: https://doi.org/10.1016/j.carbpol.2017.12.048

Zhang B, Sun W, Yu N, Sun J, Yu X, Li X, et al. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. Journal of Functional Foods. 2018 Jul;46:256-67. DOI: https://doi.org/10.1016/j.jff.2018.04.070

Wu J, Shi S, Wang H, Wang S. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydrate Polymers. 2016;144:474-94. DOI: https://doi.org/10.1016/j.carbpol.2016.02.040

Graham ML, Schuurman hH. Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research. European journal of pharmacology, 2015;759:221-230. DOI: https://doi.org/10.1016/j.ejphar.2015.02.054

Publicado

08-05-2023

Como Citar

Figueroa , G. M., Costa, D. N., Miranda , A. C. dos A., Valasques Júnior , G. L., Mendes, T. P. S., & Pires Cedro, P. Évelin P. (2023). Polissacarídeos fúngicos e seu potencial hipoglicemiante para atuar como adjuvante no tratamento do diabetes mellitus. Evidência, 23(1), 47–62. https://doi.org/10.18593/evid.32561

Edição

Seção

Saúde