Polymers of fructose: importance for the nutrition and human health
DOI:
https://doi.org/10.18593/eba.27168Keywords:
Soluble fiber, Prebiotic, Polymers of fructose, Health and well-beingAbstract
Inulin-type fructans are soluble nondigestible carbohydrates based on fructose found in many plants used in human nutrition. These polymers constituted by β-glycosidic bonds have prebiotic activity by selectively stimulating the multiplication and activity of beneficial intestinal bacteria. These microorganisms, as well as their metabolites resulting from the fermentation of fructans, have been associated to several positive effects on health and well-being such as intestinal function, immune response, metabolism, bone development, cognition and emotion in addition to preventing or improving many pathological conditions. Thus, this review aimed at raise the evidence on the effects of fructan supplementation on different aspects of human health. Therefore, it was surveyed randomized, double-blind, placebo-controlled clinical trials, published between 1995 and 2020 indexed in the databases Pubmed, Web of Science, Scielo, Scopus and Lilacs. Several studies demonstrated the benefits of fructans on many aspects of health and well-being, however, more clinical studies are necessary in order to improve the knowledge acquired until now and to fill gaps that still exist in available literature. This knowledge is essential to determine indications and possible contraindications in future therapeutic protocols.
Downloads
References
REFERÊNCIAS
Birch CS, Bonwick GA. Ensuring the future of functional foods. Int. J. Food Sci. Technol. 2019; 54(5):1467-85. DOI: https://doi.org/10.1111/ijfs.14060
Figueiredo-Ribeiro RCL, Simões K, Fialho MB, Pessoni RAB, Braga MR, Gaspar M. Potencial of the filamentous fungi from the brazilian cerrado as producers of soluble fibers. In: Benkeblia N, organizador. Polysaccharides Natural Fibers in Food and Nutrition. Boca Raton: CRC Press. 2014:131-48.
Hendry GAF. Evolutionary origins and natural functions of fructans. A climatological, biogeographic and mechanistic appraisal. New Phytol. 1993; 123(1):3-14. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb04525.x
Tungland B. Nondigestible fructans as prebiotics. In: Tungland B., organizador. Human Microbiota in Health and Disease. Academic Press. 2018:349-79. DOI: https://doi.org/10.1016/B978-0-12-814649-1.00008-9
Joaquim EO, Silva TM, Figueiredo-Ribeiro RCL, Moraes MG, Carvalho MAM. Diversity of reserve carbohydrates in herbaceous species from Brazilian campo rupestre reveals similar functional traits to endure environmental stresses. Flora, 2018; 238: 201-09. DOI: https://doi.org/10.1016/j.flora.2017.01.001
Roberfroid MB. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007; 137(S11):2493S-502. DOI: https://doi.org/10.1093/jn/137.11.2493S
Benkeblia N. Fructooligosaccharides and fructans analysis in plants and food crops. J. Chromatogr. A. 2013; 1313:54-61. DOI: https://doi.org/10.1016/j.chroma.2013.08.013
Velazquez-Hernandez ML, Baizabal-Aguirre VM, Bravo-Patino A, Cajero-Juarez M, Chavez-Moctezuma MP, Valdez-Alarcon JJ. Microbial fructosyltransferases and the role of fructans. J. Appl. Microbiol. 2009; 106:1763-78. DOI: https://doi.org/10.1111/j.1365-2672.2008.04120.x
Bosscher D. Fructan prebiotics derived from inulin. In: Charalampopoulos D, Rastall, RA, organizadores. Prebiotics and Probiotics Science and Technology. New York: Springer. 2009:163-205. DOI: https://doi.org/10.1007/978-0-387-79058-9_6
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017; 14(8):491-502. DOI: https://doi.org/10.1038/nrgastro.2017.75
Man S, Liu T, Yao Y, Lu Y, Ma L, Lu F. Friend or foe? The roles of inulin-type fructans. Carbohydr. Polym. 2021; 252:117155. DOI: https://doi.org/10.1016/j.carbpol.2020.117155
Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(3):403-13. DOI: https://doi.org/10.1007/s10096-019-03721-w
Swanson KS, de Vos WM, Martens EC, Gilbert JA, Menon RS, Soto-Vaca A, et al. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Benef Microbes. 2020; 11(2):101-29. DOI: https://doi.org/10.3920/BM2019.0082
Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr. 2013; 32(6):918-27. DOI: https://doi.org/10.1016/j.clnu.2013.02.009
Cherbut C. Inulin and oligofructose in the dietary fibre concept. Br. J. Nutr. 2002; 87(S2):S159-S62. DOI: https://doi.org/10.1079/BJN2002532
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474(11):1823-36. DOI: https://doi.org/10.1042/BCJ20160510
Gibson GR. Functional foods: probiotics and prebiotics. Culture. 2007; 28(2):1-7.
de Vries J, Le Bourgot C, Calame W, Respondek F. Effects of β-fructans fiber on bowel function: A systematic review and meta-analysis. Nutrients. 2019; 11(1):91. DOI: https://doi.org/10.3390/nu11010091
Limburg PJ, Mahoney MR, Ziegler KL, Sontag SJ, Schoen RE, Benya R, et al. Cancer Prevention Network. Randomized phase II trial of sulindac, atorvastatin, and prebiotic dietary fiber for colorectal cancer chemoprevention. Cancer Prev. Res. (Phila). 2011; 4(2):259-69. DOI: https://doi.org/10.1158/1940-6207.CAPR-10-0215
Rao M, Gao C, Hou J, Gu J, Law BYK, Xu Y. Non-Digestible Carbohydrate and the risk of colorectal neoplasia: A systematic review. Nutr. Cancer. 2020:1-14. DOI: https://doi.org/10.1080/01635581.2020.1742360
Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, Franchisseur C, Bornet F; et al. Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr Cancer. 2005; 53(2):160-8. DOI: https://doi.org/10.1207/s15327914nc5302_5
Mazraeh R, Azizi-Soleiman F, Jazayeri SMHM, Noori SMA. Effect of inulin-type fructans in patients undergoing cancer treatments: A systematic review. Pak. J. Med. Sci. 2019; 35(2):575-80. DOI: https://doi.org/10.12669/pjms.35.2.701
Liu F, Prabhakar M, Ju J, Long H, Zhou HW. Effect of inulin-type fructans on blood lipid profile and glucose level: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2017; 71(1):9-20. DOI: https://doi.org/10.1038/ejcn.2016.156
Atef M, El-Matty DA, Habib DF, Nicola WG, Saleh S, Hanna H. Ameliorative effects of inulin on non alcoholic fatty liver disease associated with type 2 diabetes mellitus in obese women. J. Innov. Pharm. Biol. Sci. 2020; 7(2):6-16.
Fortes RC, Muniz LB Efeitos da suplementação dietética com frutooligossacarídeos e inulina no organismo humano: Estudo baseado em evidências. Comun. ciênc. saúde 2009; 20(3):241-52.
Vuong HE, Hsiao EY. Gut microbes join the social network. Neuron. 2019; 101(2):196-8. DOI: https://doi.org/10.1016/j.neuron.2018.12.035
Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016; 202:254-7. DOI: https://doi.org/10.1016/j.jad.2016.05.038
Huang R, Wang K, Hu J. Effect of probiotics on depression: A Systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016; 8(8):483. DOI: https://doi.org/10.3390/nu8080483
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11):763-81. DOI: https://doi.org/10.1016/j.tins.2016.09.002
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry. 2017:16-14. DOI: https://doi.org/10.1186/s12991-017-0138-2
Taylor AM, Holscher HD. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020; 23(3):237-50. DOI: https://doi.org/10.1080/1028415X.2018.1493808
Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2015; 232(10):1793-801. DOI: https://doi.org/10.1007/s00213-014-3810-0
Azpiroz F, Dubray C, Bernalier-Donadille A, Cardot JM, Accarino A, Serra J, et al. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 2017; 29(2). DOI: https://doi.org/10.1111/nmo.12911
Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev Neurosci. 2019; 30(8):795-805. DOI: https://doi.org/10.1515/revneuro-2019-0005
Barbosa PM, Barbosa ER. The gut brain-axis in neurological diseases. Int. J. Cardiovasc. Sci. 2020; 33(5):528-36. DOI: https://doi.org/10.36660/ijcs.20200039
Kao AC, Harty S, Burnet PW. The influence of prebiotics on neurobiology and behavior. Int. Rev. Neurobiol. 2016; 131:21-48. DOI: https://doi.org/10.1016/bs.irn.2016.08.007
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: How bacterial metabolites bridge the distance. J. Clin. Investig. 2019; 129(8):3018-28. DOI: https://doi.org/10.1172/JCI128521
Abrams S, Griffin I, Hawthorne K, Liang L, Gunn S, Darlington G, et al. Combination of prebiotic short and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 2005; 82(2):471-6. DOI: https://doi.org/10.1093/ajcn/82.2.471
Holloway L, Moynihan S, Abrams S, Kent K, Hsu A, Friedlander A. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br. J. Nutr. 2007; 97(2):365-72. DOI: https://doi.org/10.1017/S000711450733674X
Drabińska N, Jarocka-Cyrta E, Złotkowska D, Abramowicz P, Krupa-Kozak U. Daily oligofructose-enriched inulin intake impacts bone turnover markers but not the cytokine profile in pediatric patients with celiac disease on a gluten-free diet: Results of a randomised, placebo-controlled pilot study. Bone. 2019; 122:184-92. DOI: https://doi.org/10.1016/j.bone.2019.03.001
van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am. J. Clin. Nutr. 1999; 69(3):544-8. DOI: https://doi.org/10.1093/ajcn/69.3.544
Griffin I, Davila P, Abrams S. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br. J. Nutr. 2002; 87(S2):S187-S91. DOI: https://doi.org/10.1079/BJN/2002536
Griffin I, Hicks P, Heaney R, Abrams S. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr. Res. 2003; 23(7):901-9. DOI: https://doi.org/10.1016/S0271-5317(03)00085-X
Souza MCC, Lajolo FM, Martini LA, Correa NB, Dan MC, Menezes EW. Effect of oligofructose-enriched inulin on bone metabolism in girls with low calcium intakes. Br. J. Nutr. 2010; 53(1):193-201. DOI: https://doi.org/10.1590/S1516-89132010000100024
van den Heuvel EG, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am. J. Clin. Nutr. 1998; 67(3):445-51. DOI: https://doi.org/10.1093/ajcn/67.3.445
Tahiri M, Tressol J, Arnaud Y, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: A stable-isotope study. Am. J. Clin. Nutr. 2003; 77(2):449-57. DOI: https://doi.org/10.1093/ajcn/77.2.449
Coudray C, Tressol JC, Gueux E, Rayssiguier Y. Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur. J. Nutr. 2003; 42(2):91-8. DOI: https://doi.org/10.1007/s00394-003-0390-x
Coxam V. Inulin-type fructans and bone health: State of the art and perspectives in the management of osteoporosis. Br. J. Nutr. 2005; 93(S1):S111-S23. DOI: https://doi.org/10.1079/BJN20041341
Scholz-Ahrens K, Schrezenmeir J. Inulin, oligofructose and mineral metabolism: experimental data and mechanism. Br. J. Nutr. 2002; 87(S2):S179-S86. DOI: https://doi.org/10.1079/BJN/2002535
Scholz-Ahrens K, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: The evidence from animal trials. J. Nutr. 2007; 137(S11):S2513-S23. DOI: https://doi.org/10.1093/jn/137.11.2513S
Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr Res. 2002; 22(1-2):13-25. DOI: https://doi.org/10.1016/S0271-5317(01)00354-2
Bunout D, Hirsch S, Pía de la Maza M, Muñoz C, Haschke F, Steenhout P, et al. Effects of prebiotics on the immune response to vaccination in the elderly. J. Parenter. Enteral. Nutr. 2002; 26(6):372-6. DOI: https://doi.org/10.1177/0148607102026006372
Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A, et al. Oligofructose-supplemented infant cereal: 2 randomized, blinded, community-based trials in peruvian infants. Am. J. Clin. Nutr. 2003; 77(4):937-42. DOI: https://doi.org/10.1093/ajcn/77.4.937
McLoughlin R, Berthon BS, Rogers GB, Baines KJ, Leong LEX, Gibson PG, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine. 2019; 46:473-85. DOI: https://doi.org/10.1016/j.ebiom.2019.07.048
Bunout D, Barrera G, Hirsch S, Gattas V, de la Maza MP, Haschke F, et al. Effects of a nutritional supplement on the immune response and cytokine production in free-living chilean elderly. J. Parenter. Enteral. Nutr. 2004; 28(5):348-54. DOI: https://doi.org/10.1177/0148607104028005348
Langkamp-Henken B, Bender BS, Gardner EM, Herrlinger-garcia KA, Kelley MJ, Murasko DM, et al. Nutritional formula enhanced immune function and reduced days of symptoms of upper respiratory tract infection in seniors. J. Am. Geriatr. Soc. 2004, 52(1):3-12. DOI: https://doi.org/10.1111/j.1532-5415.2004.52003.x
Langkamp-Henken B, Wood SM, Herlinger-Garcia KA, Thomas DJ, Stechmiller JK, Bender BS, et al. Nutritional formula improved immune profiles of seniors living in nursing homes. J. Am. Geriatr. Soc. 2006; 54(12):1861-70. DOI: https://doi.org/10.1111/j.1532-5415.2006.00982.x
Lecerf JM, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012; 108(10):1847-58. DOI: https://doi.org/10.1017/S0007114511007252
Moro G, Arslanoglu S, Stahl B, Jelinek J, Wahn U, Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 2006; 91(10):814-9. DOI: https://doi.org/10.1136/adc.2006.098251
Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 2008; 138(6):1091-5. DOI: https://doi.org/10.1093/jn/138.6.1091
Arslanoglu S, Moro GE, Boehm G, Wienz F, Stahl B, Bertino E, et al. Early neutral prebiotic oligosaccharide supplementation reduces the incidence of some allergic manifestations in the first 5 years of life. J. Biol. Regul. Homeost. Agents. 2012; 26(S3):S49-S59.
Perović J, Tumbas Šaponjac V, Kojić J, Krulj J, Moreno DA, García-Viguera C, et al. Chicory (Cichorium intybus L.) as a food ingredient - Nutritional composition, bioactivity, safety, and health claims: A review. Food Chem. 2021; 336:127676. DOI: https://doi.org/10.1016/j.foodchem.2020.127676
EFSA. European Food Safety Authority (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on the substantiation of a health claim related to “native chicory inulin” and maintenance of normal defecation by increasing stool frequency pursuant to Article of Regulation (EC) No 1924/2006. EFSA J. 2015; 13(1):3951. DOI: https://doi.org/10.2903/j.efsa.2015.3951
FDA. United States Food and Drug Administration. The declaration of certain isolated or synthetic non-digestible carbohydrates as dietary fiber on nutrition and supplement facts labels; guidance for industry; availability. Washington (DC): U.S. Food and Drug Administration, Health and Human Services. 2018:1-8.
ANVISA. Agência Nacional de Vigilânica Sanitária. Alimentos com alegações de propriedades funcionais e ou de saúde. Brasília: ANVISA. 2016. Disponível em: http://www.agricultura.gov.br/assuntos/inspecao/produtosvegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/alegacoes-de-propriedade-funcional-aprovadas_anvisa.pdf
Briet F, Achour L, Flourié B, Beaugerie L, Pellier P, Franchisseur C, Bornet F, Rambaud JC. Symptomatic response to varying levels of fructo-oligosaccharides consumed occasionally or regularly. Eur J Clin Nutr. 1995; 49(7):501-7.
Bonnema AL, Kolberg LW, Thomas W, Slavin JL. Gastrointestinal tolerance of chicory inulin products. J. Am. Diet. Assoc. 2010; 110(6):865-8. DOI: https://doi.org/10.1016/j.jada.2010.03.025
Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, et al. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr. 1999; 129(1):113-6. DOI: https://doi.org/10.1093/jn/129.1.113
Azpiroz F, Molne L, Mendez S, Nieto A, Manichanh C, Mego M, et al. Effect of chicory-derived inulin on abdominal sensations and bowel motor function. J. Clin. Gastroenterol. 2017; 51(7):619-25. DOI: https://doi.org/10.1097/MCG.0000000000000723
Micka A, Siepelmeyer A, Holz A, Theis S, Schön C. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. Int. J. Food Sci. Nutr. 2017; 68(1):82-9. DOI: https://doi.org/10.1080/09637486.2016.1212819
Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T, Tedford C, et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2019; 21(2):372-6. DOI: https://doi.org/10.1111/dom.13500
Miles JP, Zou J, Kumar MV, Pellizzon M, Ulman E, Ricci M, et al. Supplementation of low- and high-fat diets with fermentable fiber exacerbates severity of DSS-induced acute colitis. Inflamm. Bowel Dis. 2017; 23(7):1133-43. DOI: https://doi.org/10.1097/MIB.0000000000001155
Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019; 68(10):1801-12. DOI: https://doi.org/10.1136/gutjnl-2018-316250
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Evidência
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Statement
The authors retain the copyrights and grant the Journal the right of the first publication, with the work being simultaneously licensed by a Creative Commons - Attribution - Non-Commercial 4.0 International License.