Polímeros de frutose: importância para a nutrição e saúde humana

Autores

  • Rita de Cassia Leone Figueiredo-Ribeiro Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica de São Paulo
  • Rosemeire Aparecida Bom Pessoni Faculdade da Saúde, Universidade Metodista de São Paulo https://orcid.org/0000-0002-0080-7846
  • Nair Massumi Itaya Centro Universitário das Faculdades Metropolitanas Unidas, Faculdades Metropolitanas Unidas
  • Mauricio Batista Fialho Universidade Federal do ABC https://orcid.org/0000-0002-0378-0730

DOI:

https://doi.org/10.18593/eba.27168

Palavras-chave:

Fibra solúvel, Prebiótico, Polímeros de frutose, Saúde e bem-estar

Resumo

: Frutanos do tipo inulina são carboidratos solúveis não digeríveis, à base de frutose, encontrados em muitos vegetais utilizados na alimentação humana. Esses polímeros constituídos por ligações β-glicosídicas apresentam atividade prebiótica, estimulando de forma seletiva a multiplicação e atividade de bactérias intestinais benéficas. Esses micro-organismos, bem como os seus metabólitos resultantes da fermentação dos frutanos, têm sido associados a diversos efeitos positivos sobre a saúde e bem-estar como função intestinal, resposta imune, metabolismo, desenvolvimento ósseo, cognição e emoção. Além disso, esses carboidratos apresentam potencial na prevenção e melhoria de diversas condições patológicas. Desta forma, a presente revisão teve como objetivo levantar as evidências sobre os efeitos da suplementação de frutanos em diversos aspectos da saúde humana. Para tal, foi realizado o levantamento de estudos clínicos randomizados, duplo cego, placebo controlados, publicados entre os anos de 1995 e 2020, indexados nas bases de dados Pubmed, Web of Science, Scielo, Scopus e Lilacs. Diversos trabalhos demonstraram os benefícios dos frutanos sobre muitos aspectos da saúde e bem-estar, no entanto, mais estudos clínicos ainda são necessários para ampliar o conhecimento adquirido até o momento e preencher lacunas importantes existentes sobre o tema. Este conhecimento é essencial para determinar indicações e eventuais contraindicações em futuros protocolos terapêuticos.

 

Downloads

Não há dados estatísticos.

Referências

REFERÊNCIAS

Birch CS, Bonwick GA. Ensuring the future of functional foods. Int. J. Food Sci. Technol. 2019; 54(5):1467-85. DOI: https://doi.org/10.1111/ijfs.14060

Figueiredo-Ribeiro RCL, Simões K, Fialho MB, Pessoni RAB, Braga MR, Gaspar M. Potencial of the filamentous fungi from the brazilian cerrado as producers of soluble fibers. In: Benkeblia N, organizador. Polysaccharides Natural Fibers in Food and Nutrition. Boca Raton: CRC Press. 2014:131-48.

Hendry GAF. Evolutionary origins and natural functions of fructans. A climatological, biogeographic and mechanistic appraisal. New Phytol. 1993; 123(1):3-14. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb04525.x

Tungland B. Nondigestible fructans as prebiotics. In: Tungland B., organizador. Human Microbiota in Health and Disease. Academic Press. 2018:349-79. DOI: https://doi.org/10.1016/B978-0-12-814649-1.00008-9

Joaquim EO, Silva TM, Figueiredo-Ribeiro RCL, Moraes MG, Carvalho MAM. Diversity of reserve carbohydrates in herbaceous species from Brazilian campo rupestre reveals similar functional traits to endure environmental stresses. Flora, 2018; 238: 201-09. DOI: https://doi.org/10.1016/j.flora.2017.01.001

Roberfroid MB. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007; 137(S11):2493S-502. DOI: https://doi.org/10.1093/jn/137.11.2493S

Benkeblia N. Fructooligosaccharides and fructans analysis in plants and food crops. J. Chromatogr. A. 2013; 1313:54-61. DOI: https://doi.org/10.1016/j.chroma.2013.08.013

Velazquez-Hernandez ML, Baizabal-Aguirre VM, Bravo-Patino A, Cajero-Juarez M, Chavez-Moctezuma MP, Valdez-Alarcon JJ. Microbial fructosyltransferases and the role of fructans. J. Appl. Microbiol. 2009; 106:1763-78. DOI: https://doi.org/10.1111/j.1365-2672.2008.04120.x

Bosscher D. Fructan prebiotics derived from inulin. In: Charalampopoulos D, Rastall, RA, organizadores. Prebiotics and Probiotics Science and Technology. New York: Springer. 2009:163-205. DOI: https://doi.org/10.1007/978-0-387-79058-9_6

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017; 14(8):491-502. DOI: https://doi.org/10.1038/nrgastro.2017.75

Man S, Liu T, Yao Y, Lu Y, Ma L, Lu F. Friend or foe? The roles of inulin-type fructans. Carbohydr. Polym. 2021; 252:117155. DOI: https://doi.org/10.1016/j.carbpol.2020.117155

Le Bastard Q, Chapelet G, Javaudin F, Lepelletier D, Batard E, Montassier E. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(3):403-13. DOI: https://doi.org/10.1007/s10096-019-03721-w

Swanson KS, de Vos WM, Martens EC, Gilbert JA, Menon RS, Soto-Vaca A, et al. Effect of fructans, prebiotics and fibres on the human gut microbiome assessed by 16S rRNA-based approaches: a review. Benef Microbes. 2020; 11(2):101-29. DOI: https://doi.org/10.3920/BM2019.0082

Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr. 2013; 32(6):918-27. DOI: https://doi.org/10.1016/j.clnu.2013.02.009

Cherbut C. Inulin and oligofructose in the dietary fibre concept. Br. J. Nutr. 2002; 87(S2):S159-S62. DOI: https://doi.org/10.1079/BJN2002532

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474(11):1823-36. DOI: https://doi.org/10.1042/BCJ20160510

Gibson GR. Functional foods: probiotics and prebiotics. Culture. 2007; 28(2):1-7.

de Vries J, Le Bourgot C, Calame W, Respondek F. Effects of β-fructans fiber on bowel function: A systematic review and meta-analysis. Nutrients. 2019; 11(1):91. DOI: https://doi.org/10.3390/nu11010091

Limburg PJ, Mahoney MR, Ziegler KL, Sontag SJ, Schoen RE, Benya R, et al. Cancer Prevention Network. Randomized phase II trial of sulindac, atorvastatin, and prebiotic dietary fiber for colorectal cancer chemoprevention. Cancer Prev. Res. (Phila). 2011; 4(2):259-69. DOI: https://doi.org/10.1158/1940-6207.CAPR-10-0215

Rao M, Gao C, Hou J, Gu J, Law BYK, Xu Y. Non-Digestible Carbohydrate and the risk of colorectal neoplasia: A systematic review. Nutr. Cancer. 2020:1-14. DOI: https://doi.org/10.1080/01635581.2020.1742360

Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, Franchisseur C, Bornet F; et al. Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr Cancer. 2005; 53(2):160-8. DOI: https://doi.org/10.1207/s15327914nc5302_5

Mazraeh R, Azizi-Soleiman F, Jazayeri SMHM, Noori SMA. Effect of inulin-type fructans in patients undergoing cancer treatments: A systematic review. Pak. J. Med. Sci. 2019; 35(2):575-80. DOI: https://doi.org/10.12669/pjms.35.2.701

Liu F, Prabhakar M, Ju J, Long H, Zhou HW. Effect of inulin-type fructans on blood lipid profile and glucose level: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2017; 71(1):9-20. DOI: https://doi.org/10.1038/ejcn.2016.156

Atef M, El-Matty DA, Habib DF, Nicola WG, Saleh S, Hanna H. Ameliorative effects of inulin on non alcoholic fatty liver disease associated with type 2 diabetes mellitus in obese women. J. Innov. Pharm. Biol. Sci. 2020; 7(2):6-16.

Fortes RC, Muniz LB Efeitos da suplementação dietética com frutooligossacarídeos e inulina no organismo humano: Estudo baseado em evidências. Comun. ciênc. saúde 2009; 20(3):241-52.

Vuong HE, Hsiao EY. Gut microbes join the social network. Neuron. 2019; 101(2):196-8. DOI: https://doi.org/10.1016/j.neuron.2018.12.035

Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016; 202:254-7. DOI: https://doi.org/10.1016/j.jad.2016.05.038

Huang R, Wang K, Hu J. Effect of probiotics on depression: A Systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016; 8(8):483. DOI: https://doi.org/10.3390/nu8080483

Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11):763-81. DOI: https://doi.org/10.1016/j.tins.2016.09.002

Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry. 2017:16-14. DOI: https://doi.org/10.1186/s12991-017-0138-2

Taylor AM, Holscher HD. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020; 23(3):237-50. DOI: https://doi.org/10.1080/1028415X.2018.1493808

Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PWJ. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology. 2015; 232(10):1793-801. DOI: https://doi.org/10.1007/s00213-014-3810-0

Azpiroz F, Dubray C, Bernalier-Donadille A, Cardot JM, Accarino A, Serra J, et al. Effects of scFOS on the composition of fecal microbiota and anxiety in patients with irritable bowel syndrome: a randomized, double blind, placebo controlled study. Neurogastroenterol. Motil. 2017; 29(2). DOI: https://doi.org/10.1111/nmo.12911

Sasmita AO. Modification of the gut microbiome to combat neurodegeneration. Rev Neurosci. 2019; 30(8):795-805. DOI: https://doi.org/10.1515/revneuro-2019-0005

Barbosa PM, Barbosa ER. The gut brain-axis in neurological diseases. Int. J. Cardiovasc. Sci. 2020; 33(5):528-36. DOI: https://doi.org/10.36660/ijcs.20200039

Kao AC, Harty S, Burnet PW. The influence of prebiotics on neurobiology and behavior. Int. Rev. Neurobiol. 2016; 131:21-48. DOI: https://doi.org/10.1016/bs.irn.2016.08.007

Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: How bacterial metabolites bridge the distance. J. Clin. Investig. 2019; 129(8):3018-28. DOI: https://doi.org/10.1172/JCI128521

Abrams S, Griffin I, Hawthorne K, Liang L, Gunn S, Darlington G, et al. Combination of prebiotic short and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 2005; 82(2):471-6. DOI: https://doi.org/10.1093/ajcn/82.2.471

Holloway L, Moynihan S, Abrams S, Kent K, Hsu A, Friedlander A. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br. J. Nutr. 2007; 97(2):365-72. DOI: https://doi.org/10.1017/S000711450733674X

Drabińska N, Jarocka-Cyrta E, Złotkowska D, Abramowicz P, Krupa-Kozak U. Daily oligofructose-enriched inulin intake impacts bone turnover markers but not the cytokine profile in pediatric patients with celiac disease on a gluten-free diet: Results of a randomised, placebo-controlled pilot study. Bone. 2019; 122:184-92. DOI: https://doi.org/10.1016/j.bone.2019.03.001

van den Heuvel EG, Muys T, van Dokkum W, Schaafsma G. Oligofructose stimulates calcium absorption in adolescents. Am. J. Clin. Nutr. 1999; 69(3):544-8. DOI: https://doi.org/10.1093/ajcn/69.3.544

Griffin I, Davila P, Abrams S. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br. J. Nutr. 2002; 87(S2):S187-S91. DOI: https://doi.org/10.1079/BJN/2002536

Griffin I, Hicks P, Heaney R, Abrams S. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr. Res. 2003; 23(7):901-9. DOI: https://doi.org/10.1016/S0271-5317(03)00085-X

Souza MCC, Lajolo FM, Martini LA, Correa NB, Dan MC, Menezes EW. Effect of oligofructose-enriched inulin on bone metabolism in girls with low calcium intakes. Br. J. Nutr. 2010; 53(1):193-201. DOI: https://doi.org/10.1590/S1516-89132010000100024

van den Heuvel EG, Schaafsma G, Muys T, van Dokkum W. Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men. Am. J. Clin. Nutr. 1998; 67(3):445-51. DOI: https://doi.org/10.1093/ajcn/67.3.445

Tahiri M, Tressol J, Arnaud Y, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, et al. Effect of short-chain fructooligosaccharides on intestinal calcium absorption and calcium status in postmenopausal women: A stable-isotope study. Am. J. Clin. Nutr. 2003; 77(2):449-57. DOI: https://doi.org/10.1093/ajcn/77.2.449

Coudray C, Tressol JC, Gueux E, Rayssiguier Y. Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur. J. Nutr. 2003; 42(2):91-8. DOI: https://doi.org/10.1007/s00394-003-0390-x

Coxam V. Inulin-type fructans and bone health: State of the art and perspectives in the management of osteoporosis. Br. J. Nutr. 2005; 93(S1):S111-S23. DOI: https://doi.org/10.1079/BJN20041341

Scholz-Ahrens K, Schrezenmeir J. Inulin, oligofructose and mineral metabolism: experimental data and mechanism. Br. J. Nutr. 2002; 87(S2):S179-S86. DOI: https://doi.org/10.1079/BJN/2002535

Scholz-Ahrens K, Schrezenmeir J. Inulin and oligofructose and mineral metabolism: The evidence from animal trials. J. Nutr. 2007; 137(S11):S2513-S23. DOI: https://doi.org/10.1093/jn/137.11.2513S

Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr Res. 2002; 22(1-2):13-25. DOI: https://doi.org/10.1016/S0271-5317(01)00354-2

Bunout D, Hirsch S, Pía de la Maza M, Muñoz C, Haschke F, Steenhout P, et al. Effects of prebiotics on the immune response to vaccination in the elderly. J. Parenter. Enteral. Nutr. 2002; 26(6):372-6. DOI: https://doi.org/10.1177/0148607102026006372

Duggan C, Penny ME, Hibberd P, Gil A, Huapaya A, Cooper A, et al. Oligofructose-supplemented infant cereal: 2 randomized, blinded, community-based trials in peruvian infants. Am. J. Clin. Nutr. 2003; 77(4):937-42. DOI: https://doi.org/10.1093/ajcn/77.4.937

McLoughlin R, Berthon BS, Rogers GB, Baines KJ, Leong LEX, Gibson PG, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine. 2019; 46:473-85. DOI: https://doi.org/10.1016/j.ebiom.2019.07.048

Bunout D, Barrera G, Hirsch S, Gattas V, de la Maza MP, Haschke F, et al. Effects of a nutritional supplement on the immune response and cytokine production in free-living chilean elderly. J. Parenter. Enteral. Nutr. 2004; 28(5):348-54. DOI: https://doi.org/10.1177/0148607104028005348

Langkamp-Henken B, Bender BS, Gardner EM, Herrlinger-garcia KA, Kelley MJ, Murasko DM, et al. Nutritional formula enhanced immune function and reduced days of symptoms of upper respiratory tract infection in seniors. J. Am. Geriatr. Soc. 2004, 52(1):3-12. DOI: https://doi.org/10.1111/j.1532-5415.2004.52003.x

Langkamp-Henken B, Wood SM, Herlinger-Garcia KA, Thomas DJ, Stechmiller JK, Bender BS, et al. Nutritional formula improved immune profiles of seniors living in nursing homes. J. Am. Geriatr. Soc. 2006; 54(12):1861-70. DOI: https://doi.org/10.1111/j.1532-5415.2006.00982.x

Lecerf JM, Dépeint F, Clerc E, Dugenet Y, Niamba CN, Rhazi L, et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012; 108(10):1847-58. DOI: https://doi.org/10.1017/S0007114511007252

Moro G, Arslanoglu S, Stahl B, Jelinek J, Wahn U, Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 2006; 91(10):814-9. DOI: https://doi.org/10.1136/adc.2006.098251

Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 2008; 138(6):1091-5. DOI: https://doi.org/10.1093/jn/138.6.1091

Arslanoglu S, Moro GE, Boehm G, Wienz F, Stahl B, Bertino E, et al. Early neutral prebiotic oligosaccharide supplementation reduces the incidence of some allergic manifestations in the first 5 years of life. J. Biol. Regul. Homeost. Agents. 2012; 26(S3):S49-S59.

Perović J, Tumbas Šaponjac V, Kojić J, Krulj J, Moreno DA, García-Viguera C, et al. Chicory (Cichorium intybus L.) as a food ingredient - Nutritional composition, bioactivity, safety, and health claims: A review. Food Chem. 2021; 336:127676. DOI: https://doi.org/10.1016/j.foodchem.2020.127676

EFSA. European Food Safety Authority (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on the substantiation of a health claim related to “native chicory inulin” and maintenance of normal defecation by increasing stool frequency pursuant to Article of Regulation (EC) No 1924/2006. EFSA J. 2015; 13(1):3951. DOI: https://doi.org/10.2903/j.efsa.2015.3951

FDA. United States Food and Drug Administration. The declaration of certain isolated or synthetic non-digestible carbohydrates as dietary fiber on nutrition and supplement facts labels; guidance for industry; availability. Washington (DC): U.S. Food and Drug Administration, Health and Human Services. 2018:1-8.

ANVISA. Agência Nacional de Vigilânica Sanitária. Alimentos com alegações de propriedades funcionais e ou de saúde. Brasília: ANVISA. 2016. Disponível em: http://www.agricultura.gov.br/assuntos/inspecao/produtosvegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/alegacoes-de-propriedade-funcional-aprovadas_anvisa.pdf

Briet F, Achour L, Flourié B, Beaugerie L, Pellier P, Franchisseur C, Bornet F, Rambaud JC. Symptomatic response to varying levels of fructo-oligosaccharides consumed occasionally or regularly. Eur J Clin Nutr. 1995; 49(7):501-7.

Bonnema AL, Kolberg LW, Thomas W, Slavin JL. Gastrointestinal tolerance of chicory inulin products. J. Am. Diet. Assoc. 2010; 110(6):865-8. DOI: https://doi.org/10.1016/j.jada.2010.03.025

Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, et al. Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J. Nutr. 1999; 129(1):113-6. DOI: https://doi.org/10.1093/jn/129.1.113

Azpiroz F, Molne L, Mendez S, Nieto A, Manichanh C, Mego M, et al. Effect of chicory-derived inulin on abdominal sensations and bowel motor function. J. Clin. Gastroenterol. 2017; 51(7):619-25. DOI: https://doi.org/10.1097/MCG.0000000000000723

Micka A, Siepelmeyer A, Holz A, Theis S, Schön C. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. Int. J. Food Sci. Nutr. 2017; 68(1):82-9. DOI: https://doi.org/10.1080/09637486.2016.1212819

Chambers ES, Byrne CS, Rugyendo A, Morrison DJ, Preston T, Tedford C, et al. The effects of dietary supplementation with inulin and inulin-propionate ester on hepatic steatosis in adults with non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2019; 21(2):372-6. DOI: https://doi.org/10.1111/dom.13500

Miles JP, Zou J, Kumar MV, Pellizzon M, Ulman E, Ricci M, et al. Supplementation of low- and high-fat diets with fermentable fiber exacerbates severity of DSS-induced acute colitis. Inflamm. Bowel Dis. 2017; 23(7):1133-43. DOI: https://doi.org/10.1097/MIB.0000000000001155

Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019; 68(10):1801-12. DOI: https://doi.org/10.1136/gutjnl-2018-316250

Downloads

Publicado

25-03-2022

Como Citar

Figueiredo-Ribeiro, R. de C. L., Pessoni, R. A. B., Itaya, N. M., & Fialho, M. B. (2022). Polímeros de frutose: importância para a nutrição e saúde humana. Evidência, 22(1), 9–24. https://doi.org/10.18593/eba.27168

Edição

Seção

Biociências