Cromossomos holocêntricos em animais e plantas: o que nós sabemos sobre estes pontos fora da curva?

Autores

DOI:

https://doi.org/10.18593/evid.32760

Palavras-chave:

Centrômero, Cinetócoros, CENH3, Luzula nivea, Caenorhabditis elegans

Resumo

Usualmente, membros do domínio Eukarya possuem cinetócoros agrupados em um único ponto, o que caracteriza os cromossomos monocêntricos. Todavia, em alguns taxa o aparato proteico que compõe o cinetócoro é distribuído continuamente ou discretamente ao longo do comprimento do cromossomo, condição que define os cromossomos holocêntricos. O objetivo desta revisão é fornecer uma visão geral dos aspectos cariomorfológicos dos cromossomos holocêntricos de animais e plantas, assim como uma compreensão de sua origem, evolução e possíveis implicações adaptativas da sua presença em eucariotos. As diferenças estruturais mais consideráveis entre cromossomos holocêntricos e monocêntricos dizem respeito às proteínas do cinetócoro, ao padrão de fosforilação da histona H3 e ao DNA satélite centromérico. A distribuição de cromossomos holocêntricos em árvores filogenéticas evidencia seu surgimento independente inúmeras vezes ao longo da evolução. Apesar de muitas hipóteses terem sido criadas para explicar a origem dos cromossomos holocêntricos, nenhuma foi confirmada ou refutada. Embora sejam inegáveis as vantagens adaptativas geradas por sua presença, especialmente em ambientes clastogênicos, o comportamento típico dos cromossomos com cinetócoros difusos parece ser suficiente para torná-los a exceção e não a regra entre os eucariotos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Thainara Siqueira Messias

Bacharel em Biotecnologia. Mestrado em Genética e Melhoramento de Plantas pela Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.

Referências

Sybenga, J. Plant Cytogenetics. Heidelberg (Berlin): Springer; 1992.

Appels R, Morris R, Gill BS, May CE. Chromossome Biology. New York: United States: Springer & Science Business Media; 1998.

Dernburg AF. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. J Cell Bio. 2001;153(6):33-8.

Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J et al. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet. Genome Res. 2010;129(1-3):82-96.

Maddox PS, Oegema K, Desai A, Cheeseman IM. “Holo”er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 2004;12:641-53.

Schrader F. Notes on the mitotic behavior of long chromosomes. Cytologia. 1935;6(5):422-30.

Chickering AM. A preliminary study of spermatogenesis of Belastoma (Zaita) fluminea. Trans Am Microsc Soc. 1916;35(1):45-56.

Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res. 2012;20:579-93.

Zedek F, Veselý P, Horová L, Bures P. Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants. Sci. Rep. 2016;6(1):1-8.

Sheikh SA, Kondo K. Differential staining with orcein, giemsa, CMA and DAPI for comparative chromossome study of 12 species of Australian Drosera (Droseraceae). Am J. Bot. 1995;80(10):1278-86.

Feitoza L, Costa L, Guerra M. Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants. PLoS One. 2017;12(8):e0183341.

Ray JH, Venketeswaran S. Constitutive heterochromatin distribution in monocentric and polycentric chromosomes. Chromosoma. 1978;66(4):341-50.

Guerra M, García MA. Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Corvolvulaceae). Genome. 2004;47(1):134-40.

Vanzela ALL, Cuadrado A, Guerra M. Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet. Mol. Biol. 2003;26(2):199-201.

Silva CRM, Quintas CC, Vanzela ALL. Distribution of 45S and 5S rDNA sites in 23 species of Eleocharis (Cyperaceae). Genetica. 2010;138:951-57.

Nagaki K, Kashihara K, Murata M. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell. 2005;17(7):1886-93.

Braselton JP. The ultrastructure of the non-localized kinetochores of Luzula and Cyperus. Chromosoma, 1971;36(1):89-99.

Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. Phosphorylation of histone H3 in plants – A dynamic affair. Biochim. Biophys. Acta Gene Struc. Expre. 2007;1769(5-6):308-15.

Manzanero S, Arana P, Puertas MJ, Houben A. The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma. 2000;109(5):308-17.

Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ. Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica. 2006;126:33-41.

Gernand D, Demidov D, Houben A. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono – and polycentric chromosomes. Cytogenet. Genome Res. 2003;101(2):172-76.

Haizel T, Lim YK, Leitch AR, Moore G. Molecular analysis of holocentric centromeres of Luzula species. Cytogenet. Genome Res. 2005;109(1-3):134-43.

Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14(8):1691-1704.

Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics. 2003;163(3):1221-25.

Powers J, Rose DJ, Saunders A, Dunkelbarger S, Strome S, Saxton WM. Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J Cell Biol. 2004;166(7):991-1001.

Stear JH, Roth MB. Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev. 2002;16(12);1498-1508.

Bures P, Zedek F, Markova M. Holocentric chromosomes. In: Greilhuber J, Dolezel J, Wendel J, editors. Plant Genome Diversity Volume 2. 1st ed. Viena (Austria): Springer; 2013. p. 187-208.

Sakuno T, Tada K, Watanabe Y. Kinetochore geometry defined by cohesion within the centromere. Nature. 2009;458(7240):852-58.

Barnes TM, Kohara Y, Coulson A, Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995;141(1):159-79.

Halkka O. Recombination in six homopterous families. Evolution. 1964;18(1):81-8.

Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C. Holocentric chromosomes in meiosis I. Restriction of the number of chiasmata in bivalents. Chromosome Res. 2004;12:733-39.

Albertson DG, Thomson JN. The kinetochores of Caenorhabditis elegans. Chromosoma. 1982;86(3):409-28.

Nordenskiold H. Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. Hereditas. 1961;47(2):203-38.

Dumont J, Oegema K, Desai A. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat. Cell Bio. 2010;12(9):894-901.

Schvarzstein M, Wignall SM, Villeneuve AM. Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev. 2010;24(3):219-28.

Ogawa K. Chromosome studies in the Myriapoda V. A chromosomal survey in some chilopods with a cyto-taxonomic consideration. Jpn. J. Genet. 1953;28(1):12-18.

Rezác M, Král J, Pekár S. The spider genus Dysdera (Araneae, Dysderidae) in Central Europe: revision and natural history. J. Arachnol. 2007;35(3):432-62.

Benavente R, Wettstein R. Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma. 1980;77(1):69-81.

Benavente R. Holocentric chromosomes of arachnids: presence of kinetochore plates during meiotic divisions. Genetica. 1982;59(1):23-27.

Mattos VF, Carvalho LS, Carvalho MA, Schneider MC. Insights into the origin of the high variability of multivalent-meiotic associations in holocentric chromosomes of Tityus (Archaeotityus) scorpions. PLoS One. 2018;13(2):1-23.

Hill CA, Guerrero FD, Van Zee JP, Geraci NS, Walling JG, Stuart JJ. The position of repetitive DNA sequence in the southern cattle tick genome permits chromosome identification. Chromosome Res. 2009;17:77-89.

Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479(7374):487-92.

Nokkala S, Laukkanen A, Nokkala C. Mitotic and meiotic chromosomes in Somatochlora metallica (Cordulidae, Odonata). The absence of localized centromeres and inverted meiosis. Hereditas. 2002;136(1):7-12.

Kuznetsova VG, Maryańska-Nadachowska A, Shapoval NA, Anokhin BA, Shapoval AP. Cytogenetic characterization of eight Odonata species originating from the Curonian Spit (the Baltic Sea, Russia) using C-Banding and FISH with 18S rDNA and telomeric (TTAGG) probes. Cytogenet. Genome Res. 2018;153(3);147-57.

Golub NV, Nokkala S, Kuznetsova VG. Holocentric chromosomes of psocids (Insecta, Psocoptera) analysed by C-banding, silver impregnation and sequence specific fluorochromes CMA 3 and DAPI. Folia Biol. 2004;52(3-4):143-49.

Murakami A, Imai HT. Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera). Chromosoma. 1974;47(2):167-78.

Lukhtanov VA, Dinca V, Friberg M, Síchová J, Olofsson M, Vila R et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. PNAS. 2018;115(41);9610-19.

Subirana JA, Messeguer X. A satellite explosion in the genome of holocentric nematodes. PLoS One, 2013;8(4):e62221.

Albertson DG, Thomson JN. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1993;1:15-26.

Monti V, Manicardi GC, Mandrioli M. Distribution and molecular composition of heterochromatin in the holocentric chromosomes of the aphid Rhopalosiphum padi (Hemiptera: Aphididae). Genetica. 2010;138:077-1084.

Bardella VB, Pita S, Vanzela ALL, Galvão C, Panzera F. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae). Mem. Inst. Oswaldo Cruz. 2016;111(10):614-24.

Henikoff S, Thakur J, Kasinathan S, Talbert PB. Remarkable evolutionary plasticity of centromeric chromatin. Cold Spring Harb. Sym. Quant. Biol. 2017;82:71-82.

Escudero M, Hipp AL, Hansen TF, Voje KL, Luceño M. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol. 2012;195(1)237-47.

Tanaka N, Tanaka N. Chromosome studies in Chionographis (Liliaceae) I. On the holokinetic nature of chromosomes in Chionographis japonica Maxim. Cytologia. 1977;42(3-4);753-63.

Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell. 2022;185(17):3153-3168.

Marques A, Ribeiro T, Neumann P, Macas J, Novák P, Schubert V et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. PNAS. 2015;112(44):13633-13638.

Ribeiro T, Marques A, Novák P, Schubert V, Vanzela AL, Macas, J et al. Centromeric and non-centromeric satellite DNA organization differs in holocentric Rhynchospora species. Chromosoma. 2017;126:325-335.

Kynast RG, Joseph JA, Pellicer J, Ramsay MM, Rudall PJ. Chromosome behavior at the base of the angiosperm radiation: karyology of Trithuria submersa (Hydatellaceae, Nymphaeales). Am. J. Bot. 2014;101(9):1447-55.

Nair RR. Chromosome number analysis in different sex types and open pollinated seedlings of nutmeg (Myristica fragrans Houtt). J. Plant. Crops. 2019;47(3):197-201.

Schubert V, Neumann P, Marques A, Heckmann S, Macas J, Pedrosa-Harand A, et al. Super-resolution microscopy reveals diversity of plant centromere architecture. Int. J. Mol. Sci. 2020;21(10):1-17.

Kolodin P, Cempírková H, Bures P, Horová L, Veleba A, Francová J, et al. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Syst. Evol. 2018;304:1289-96.

Escudero M, Márquez-Corro JI, Hipp AL. The phylogenetic origins and evolutionary history of holocentric chromosomes. Syst. Bot. 2016;41(3):580-85.

Mola LM, Papeschi AG. Holokinetic chromosomes at a glance. BAG – J. Bas. Appl. Genet. 2006;17(1):17-33.

Greilhuber J. Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, editors. Monocotyledons: systematics and evolution. 1st ed. Surrey (United Kingdom) Kew Royal Botanic Gardens; 1995. p 379-414.

Villasante A, Abad JP, Méndez-Lago M. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. PNAS. 2007;104(25):10542-47.

Senaratne AP, Cortes-Silva N, Drinnenberg IA (2022, July). Evolution of holocentric chromosomes: drivers, diversity, and deterrents. Semin Cell Dev Biol. 2022;(127):90-99.

Cangiano G, Volpe AL. Repetitive DNA sequences located in the terminal portion of the Caenorhabditis elegans chromosomes. Nucleic Acids Res. 1993;21(5):1133-39.

Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E et al. Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8(6):e1002777.

Márquez-Corro JI, Escudero M, Luceño M. Do holocentric chromosomes represent an evolutionary advantage? A study of paired analyses of diversification rates of lineages with holocentric chromosomes and their monocentric closest relatives. Chromosome Res. 2018;26:139-152.

Rivi M, Monti V, Mazzoni E, Cassanelli S, Panini M, Bizzaro D et al. Karyotype variations in Italian populations of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae). Bull Entomol Res. 2012;102(6):663-671.

Mandrioli M, Carlo Manicardi G. Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics? Current Genomics. 2012;13(5):343-349.

Zedek F, Bures P. Pest arthropods with holocentric chromosomes are more resistant to sterilizing ionizing radiation. Rad. Res. 2019;191(3):255-61.

Zavitkovski J, Salmonson BJ. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of Northern Wisconsin. Rad. Bot. 1975;15(4):337-48.

Zedek F, Bures P. Holocentric chromosomes: from tolerance to fragmentation to colonization of the land. Ann. Bot. 2018;121(1):9-16.

Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 2013;23(5):392-98.

Mandrioli M, Carlo Manicardi G. Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics? Curr. Genomics. 2012;13(5):343-49.

Kati AN, Mandrioli M, Skouras PJ, Malloch GL, Voudouris CC, Venturelli M et al. Recent changes in the distribution of carboxylesterase genes and associated chromosomal rearrangements in Greek populations of the tobacco aphid Myzus persicae nicotianae. Biol. J. Linn Soc. 2014;113(2):455-70.

Márquez-Corro JI, Escudero M, Luceño M. Do holocentric chromosomes represent an evolutionary advantage? A study of paired analyses of diversification rates of lineages with holocentric chromosomes and their monocentric closest relatives. Chromosome Res. 2018;26:139-52.

Cook LG. Extraordinary and extensive karyotypic variation: a 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Coccoidea: Eriococcidae). Genome. 2000;43(2):255-63.

Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409(6823):1092-101.

Sugiura K, Arakawa K, Matsumoto M. Distribution of Macrobiotus shonaicus Stec, Arakawa & Michalczyk, 2018 (Tardigrada: Eutardigrada: Macrobiotidae) in Japan. Zootaxa. 2020;4767(1):56-70.

Jeffery NW, Oliveira IS, Gregory TR, Rowell DM, Mayer G. Genome size and chromosome number in velvet worms (Onychophora). Genetica. 2012;140:497-504.

Rebecchi L, Altiero T, Bertolani R. Banding techniques on tardigrade chromosomes: the karyotype of Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Chromosome Res. 2002;10:437-43.

Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H, Shin-I T et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications. 2016;7(1):1-14.

Hashimoto T, Kunieda T. DNA protection protein, a novel mechanism of radiation tolerance: lessons from tardigrades. Life. 2017;7(2):1-11.

Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J. Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles. 2005;9:219-27.

Publicado

18-09-2023

Como Citar

Corrêa Morais, G., Siqueira Messias, T., & Conde Xavier Oliveira, G. (2023). Cromossomos holocêntricos em animais e plantas: o que nós sabemos sobre estes pontos fora da curva?. Evidência, 23(2), 145–162. https://doi.org/10.18593/evid.32760

Edição

Seção

Biociências