Avaliação da composição química e atividade antidiabética in vitro dos óleos essenciais de Algrizea minor (Myrtaceae) e Eugenia brejoensis (Myrtaceae)

Autores

  • Marília Lúcia Leal Rodrigues Soares Faculdade de Integração do Sertão – R. João Luiz de Melo, 2110 - Tancredo Neves, Serra Talhada - PE, 56909-205. https://orcid.org/0009-0008-4634-7081
  • Bruno Olivera de Veras Universidade Federal de Pernambuco – Centro de Biociências, Departamento de Bioquímica – Av. Prof. Moraes Rego, 1235 – Cidade Universitária, Recife – PE – CEP: 50670-901. https://orcid.org/0000-0002-7814-1757
  • Fernanda Miguel de Andrade Faculdade Medicina do Sertão https://orcid.org/0000-0002-8466-2196

DOI:

https://doi.org/10.18593/evid.32564

Palavras-chave:

Diabetes mellitus, Produtos naturais, Enzimas

Resumo

Introdução: O diabetes mellitus é um distúrbio metabólico crônico, caraterizado pelo aumento da concentração de glicose no sangue (hiperglicemia). Óleos essenciais apresentam constituintes que podem auxiliar no controle do diabetes com base em diversos mecanismos de ação (estimulação da produção de insulina, inibição enzimática, entre outros), surgindo como candidatos promissores antidiabéticos. Objetivo: avaliar a composição química e atividade antidiabética in vitro dos óleos essenciais de Algrizea minor e Eugenia brejoensis. Metodologia: Os óleos essenciais foram obtidos por hidrodestilação, caracterizados por cromatografia gasosa acoplada a espectrômetro de massas (CG-EM) e detector de ionização de chamas (CG-DIC). Os óleos foram avaliados quanto a inibição de α-amilase e α-glicosidase por métodos colorimétricos. Resultados: Foi possível identificar 94,56% da composição química do óleo essencial de A. minor, que apresentou como componentes marjoritários o β-pineno, α-pineno, germacreno, biciclogermacreno, cariofileno e limoneno; e 96,92% da composição química do óleo essencial de E. brejoensis, sendo seus compostos majoritários o (E)-cariofileno, cadineno, Epi-α-muurolol, biciclogermacreno, α-cadinol e espatulenol. Quanto a inibição de α-amilase e α-glicosidase o óleo essencial de A. minor obteve inibição, com valores de CI50 (concentração inibitória média) de 0,83 ± 0,00 μg/mL e 9,12 ± 0,12 μg/mL, para as referidas enzimas respectivamente. O óleo essencial de E. brejoensis também foi capaz de inibir as enzimas relacionadas ao metabolismo dos carboidratos, apresentando valores de CI50 de 1,42± 0,02 μg/mL e 37,23± 0,01 μg/mL para α-amilase e α-glucosidase, respectivamente. Conclusão: Os óleos essenciais apresentam a capacidade de inibir enzimas relacionadas ao metabolismo dos carboidratos, podendo tornar-se ferramenta terapêutica estratégica para o tratamento do diabetes mellitus.

Downloads

Não há dados estatísticos.

Referências

Junior AG, Souza P, Lívero FAR. Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species. J Ethnopharmacol. 2019; 245:112169. DOI: https://doi.org/10.1016/j.jep.2019.112169

Rosa C, Câmara SG, Béria JU. Representações e intenção de uso da fitoterapia na atenção básica à saúde. Ciênc saúde Coletiva. 2011;16 (1):311-318. DOI: https://doi.org/10.1590/S1413-81232011000100033

Citadini-Zanette V, Colle MPD, Pereira RC, Rossato AE, Ferreira MEA, Santos R. Fitoterapia Racional: aspectos taxonômicos, agroecológicos, etnobotânicos e terapêuticos. Bioscience. 2017;6(5):1-6.

Boniface PK, Ferreira SB, Kaiser CR. The current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. J Ethnopharmacol. 2017;206:193-223. DOI: https://doi.org/10.1016/j.jep.2017.05.024

Veras BO, Oliveira MBM, Oliveira FGS, Santos YQ, Oliveira JRS, Lima VLM et al. Chemical composition and evaluation of the antinociceptive, antioxidant and antimicrobial effects of essential oil from Hymenaea cangaceira (Pinto, Mansano & Azevedo) native to Brazil: A natural medicine. J Ethnopharmacol. 2019;247:112265. DOI: https://doi.org/10.1016/j.jep.2019.112265

Silva GC, Silva AG, Amorim LC, Silva MV, Silva PM, Correia MTS. Potencial antimicrobiano do óleo essencial de Algrizea minor frente a Staphylococcus aureus. In: Zuffo AM, organizador. As Regiões Semiáridas e suas Especificidades 3. Ponta Grossa (PR): Atena Editora; 2019. p. 133-141. DOI: https://doi.org/10.22533/at.ed.92319150314

Mazine FF, Souza VC. A new species of Eugenia (Myrtaceae) from north-eastern Brazil (2008). Botanical J Linnean Societ. 2008;158:775-777. DOI: https://doi.org/10.1111/j.1095-8339.2008.00921.x

Sobral M, Proença C. Souza M, Mazine F, Lucas E. Myrtaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. 2015;66(4):1085-1113.

Cândido CS, Portella CSA, Laranjeira BJ, Silva SS, Arriaga AMC, Santiago GMP, et al. Effects of Myrcia ovata Cambess essential oil on planktonic growth of gastrointestinal microorganisms and biofilm formation of Enterococcus fecalis. Brazilian J Microbiol. 2010;41:621-627. DOI: https://doi.org/10.1590/S1517-83822010000300012

Silva AN, Uetanabaro APT, Lucchese AM. Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae). Nat Prod Commun. 2013;8:269-271. DOI: https://doi.org/10.1177/1934578X1300800235

Andrade GS, Guimarães AG, Santana MT, Siqueira RS, Passos LO, Machado SMF, et al. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice. Rev Bras Farmacogn. 2012;22(1):81-188. DOI: https://doi.org/10.1590/S0102-695X2011005000205

Celli GB, Pereira-Netto AB, Beta T. Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Res Internat. 2011;44(8):2442-2451. DOI: https://doi.org/10.1016/j.foodres.2010.12.036

Moresco HH, Colla G, Oliveira AS, Brighente IMC. Atividade antioxidante de Myrcia splendens por três diferentes métodos. 51º Congresso Brasileiro de Química, São Luís-MA, 09 a 13 de outubro de 2011.

Pereira ML, Santos DCP, Soares Júnior CAM, Bazan TAXN, Bezerra Filho CM, Silva MV, et al. Development and Physicochemical Characterization of Eugenia brejoensis Essential Oil-Doped Dental Adhesives with Antimicrobial Action towards Streptococcus mutans. J. Funct. Biomater. 2022;13(3):149. DOI: https://doi.org/10.3390/jfb13030149

Diniz RM, Fernandes TGF, Mendonça JSP, Silva LS, Saminez WFS, Oliveira PV, et al. Antimicrobial and antiinflammatory effects of Eugenia brejoensis essential oil in mice wounds infected by Staphylococcus aureus. Front Pharmacol. 2022;14(13):999131. DOI: https://doi.org/10.3389/fphar.2022.999131

Bezerra Filho CM, Silva LCN, Silva MV, Løbner-Olesen A, Struve C, Krogfelt KA, et al. Antimicrobial and antivirulence action of Eugenia brejoensis essential oil in vitro and in vivo invertebrate models. Front Microbiol. 2020;19(11):424. DOI: https://doi.org/10.3389/fmicb.2020.00424

Souza LIO, Bezerra-Silva PC, Navarro DMAF, Silva AG, Correia MTS, Silva MV, et al. The chemical composition and trypanocidal activity of volatile oils from Brazilian Caatinga plants. Biomed Pharmacother. 2017;96:1055-1064. DOI: https://doi.org/10.1016/j.biopha.2017.11.121

Nafis A, Kasrati A, Jamali CA, Mezrioui N, Setzer W, Abbad A, et al. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Indust Crops and Products. 2019;137:396-400. DOI: https://doi.org/10.1016/j.indcrop.2019.05.032

Tomaino A, Cimino F, Zimbalatti V, Venuti V. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005;89:549-554. DOI: https://doi.org/10.1016/j.foodchem.2004.03.011

Benfatti CS, Cordova SM, Guedes A, Magina MDA, Cordova CMM. Atividade antibacteriana in vitro de extratos brutos de espécies de Eugenia Sp frente a cepas de molicutes. Rev Pan-Amaz Saúde. 2010;1:33-39. DOI: https://doi.org/10.5123/S2176-62232010000200003

Ogurtsova K, Fernandes JDR, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50. DOI: https://doi.org/10.1016/j.diabres.2017.03.024

International Diabetes Federation. IDF Diabetes Atlas. Diabetes Voice Online. 2017;64:5-36.

Valdés E, Sepúlveda-Martínez A, Manukián B, Parra-Cordero M. Assessment of pregestational insulin resistance as a risk factor of preeclampsia. Gynecol Obstet Invest. 2014;77(2):111-6. DOI: https://doi.org/10.1159/000357944

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. DOI: https://doi.org/10.1038/nrdp.2015.19

Jacob TA, Soares LR, Santos MR, Santos LR, Santos ER, Torres GC, et al. Diabetes Mellitus Gestacional: Uma Revisão de Literatura. Braz J Surg Clin Res. 2014;6(2):33-37.

Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nature Communications, 2016;7:11463. DOI: https://doi.org/10.1038/ncomms11463

Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 2010;39(3):481-497. DOI: https://doi.org/10.1016/j.ecl.2010.05.011

World Health Organization. (1). Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. World Health Organization. 1999. http://www.who.int/iris/handle/10665/66040.

Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovascular Diabetology, 2012;11(9):1-13. DOI: https://doi.org/10.1186/1475-2840-11-9

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019;15:107843. DOI: https://doi.org/10.1016/j.diabres.2019.107843

Cierpka-Kmiec K, Wronska A, Kmiec Z. In vitro gereration of pancreatic β-cells for diabetes treatment. I. β-like celss derived from human pluripotent stem cells. Folia Histochemica et Cytobiologica, 2019;57(1):1-14.

Withers SG, Aebersold R. Approaches to labeling and identification of active site residues in glycosidases. Protein Science, Cold Springer Harbor, 1995;4:361-372. DOI: https://doi.org/10.1002/pro.5560040302

Pereira CA, Pereira LLS, Corrêa AD, Chagas PMB, Souza SP, Santos CD. Inibição de enzimas digestivas por extratos de pó comercial de Hoodia gordonii utilizado no tratamento da obesidade. Brazilian Journal of Biosciences, Porto Alegre, 2011;9:265-269.

Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar D, et al. Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.)Skeels seedkernel invitro andin Goto-Kakizaki (GK) rats. Carbohydrate Research, 2008;343(7):1278-1281. DOI: https://doi.org/10.1016/j.carres.2008.03.003

Fujisawa T, Ikegami H, Inoue K, Kawabata Y, Ogihara T. Effect of two alpha-glucosidase inhibitors, voglibose and acarbose, on post prandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism, 2005;54(3):387-390. DOI: https://doi.org/10.1016/j.metabol.2004.10.004

Silva TC, Justino AB, Prado DG, Koch GA, Martins MM, Santos PS, et al. Chemical composition, antioxidant activity and inhibitory capacity of α-amylase, α-glucosidase, lipase and non-enzymatic glycation, in vitro, of the leaves of Cassia bakeriana Craib. Ind Crops Products. 2019;140:1-13. DOI: https://doi.org/10.1016/j.indcrop.2019.111641

Lakshmana SS, Chandrasekaran R, Arjun HA, Anantharaman P. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydr Polym. 2019;209:350-355. DOI: https://doi.org/10.1016/j.carbpol.2019.01.039

Seetaloo AD, Aumeeruddy MZ, Rengasamy KRR, Mahomoodally FM. Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management: a systematic review. South African Journal of Botany, 2019;120:3-24. DOI: https://doi.org/10.1016/j.sajb.2018.05.015

Agrawal N, Choudhary AS, Sharma MC, Dobhal MP. Chemical constituents of plants from the genus Litsea. Chem Biodivers. 2011;8:223-243. DOI: https://doi.org/10.1002/cbdv.200900408

Gupta AK, Mishra R, Singh AK, Srivastava A, Lal RK. Genetic variability and correlations of essential oil yield with agro-economic traits in Mentha species and identification of promising cultivars. Ind Crops Products. 2017;95:726-732. DOI: https://doi.org/10.1016/j.indcrop.2016.11.041

Yang XW, Huang MZ, Jin YS, Sun LN, Song Y, Chen HS. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia. 2012;83(7):1169-1175. DOI: https://doi.org/10.1016/j.fitote.2012.07.005

Palanisamy UD, Ling LT, Manaharan T, Appleton DR. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chemistry. 2011;127:21-27. DOI: https://doi.org/10.1016/j.foodchem.2010.12.070

Amorim ACL, Lima CKF, Hovell AMC, Miranda ALP, Rezende CM. Antinociceptive and hypothermic evaluation of the leaf essential oil and isolated terpenoids from Eugenia uniflora L. (Brazilian Pitanga). Phytomedicine. 2009;16(10):923-928. DOI: https://doi.org/10.1016/j.phymed.2009.03.009

Salem N, Kefi S, Olfa T, Ayed A, Jallouli S, Feris N, et al. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Ind Crops Products. 2018;124:115-125. DOI: https://doi.org/10.1016/j.indcrop.2018.07.051

Dos Santos JFS, Rocha JE, Bezerra CF, Silva MKN, Matos YMLS, Freitas TS, et al. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food Chem. 2018;261:233-239. DOI: https://doi.org/10.1016/j.foodchem.2018.04.015

Costa JS, Freitas JJS, Setzer WN, Silva JKR, Maia JGS, Figueiredo PLB. Variability in the Chemical Composition of Myrcia sylvatica (G. Mey) DC. Essential Oils Growing in the Brazilian Amazon. Molecules 2022;27:8975. DOI: https://doi.org/10.3390/molecules27248975

Da Silva VP, Alves CCF, Miranda MLD, Bretanha LC, Balleste MP, Micke GA, et al. Chemical composition and in vitro leishmanicidal, antibacterial and cytotoxic activities of essential oils of the Myrtaceae family occurring in the Cerrado biome. Ind Crops Products. 2018;123:638-645. DOI: https://doi.org/10.1016/j.indcrop.2018.07.033

Gad HÁ, Mamadalieva NZ, Böhmdorfer S, Rosenau T, Zengin G, Mamadalieva RZ, et al. GC-MS based identification of the volatile components of six Astragalus species from Uzbekistan and their biological activity. Plants 2021;10: 124. DOI: https://doi.org/10.3390/plants10010124

Belhadj S, Hentati O, Hammami M, Hadj AB, Boudawara T, Dammak M, et al. Metabolic impairments and tissue disorders in alloxan-induced diabetic rats are alleviated by Salvia officinalis L. essential oil. Biomed Pharmacother. 2018;108:985-995. DOI: https://doi.org/10.1016/j.biopha.2018.09.108

Prabakaran K, Shanmugave G. Antidiabetic activity and phytochemical constituents of Syzygium cumini seeds in Puducherry region, South India. Int. J. Pharmacogn. Phytochem. Res. 2017;9:985-989. DOI: https://doi.org/10.25258/phyto.v9i07.11168

Oboh G, Akinbola IA, Ademosun AO, Sanni DM, Odubanjo OV, Olasehinde TA, et al. Essential oil from clove bud (Eugenia aromatica Kuntze) Inhibit key enzymes relevant to the management of type-2 diabetes and some pro-oxidant induced lipid peroxidation in rats pancreas in vitro. J. Oleo Sci. 2015;64:775-782. DOI: https://doi.org/10.5650/jos.ess14274

Xu F, Gu D, Wang M, Zhu L, Chu T, Cui Y, et al. Screening of the potential α-amylase inhibitor in essential oil from Cedrus deodara cones. Ind Crops Products. 2017;103:251-256. DOI: https://doi.org/10.1016/j.indcrop.2017.04.006

Tundis R, Bonesi M, Sicari V, Pellicanò TM, Tenuta MC, Leporini M, et al. Poncirus trifoliata (L.) Raf.: Chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J Functional Foods. 2016;25:477-485. DOI: https://doi.org/10.1016/j.jff.2016.06.034

El-Nashar HAS, Eldehna WM, Al-Rashood ST, Alharbi A, Eskandrani RO, Aly SH. GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Egypt: Chemical Characterization and Molecular Docking Studies. Molecules. 2021;26:6984. DOI: https://doi.org/10.3390/molecules26226984

Downloads

Publicado

29-06-2023

Como Citar

Soares, M. L. L. R., Veras, B. O. de, & Andrade, F. M. de. (2023). Avaliação da composição química e atividade antidiabética in vitro dos óleos essenciais de Algrizea minor (Myrtaceae) e Eugenia brejoensis (Myrtaceae). Evidência, 23(1), 33–46. https://doi.org/10.18593/evid.32564

Edição

Seção

Saúde