Tucumã extracts decreases PML/RARΑ gene expression in NB4/APL cell line





Astrocaryum aculeatum, ATRA, Carotenoids, Leukemia, Differentiation syndrome


Acute promyelocytic leukemia (APL) is a cancer pharmacologically treated with all-trans retinoic acid (ATRA), although well tolerated by most patients, some develop toxicity to ATRA, Differentiation Syndrome. The Amazon Biome has several fruits and oil plants rich in micronutrients, particularly carotenoids as the fruit tucumã (Astrocaryum aculeatum). This study analyzed the antitumor and cytoprotective activity of tucumã with and without concomitant exposure of ATRA in high concentration mimicking the toxicity of differentiation syndrome, as the potential cytotoxic effect of chemotherapeutic in an APL cell line. The cultured NB4 cells were exposed to ethanolic extracts of tucumã and to synergism with extracts and ATRA. Determination of proliferation, cell viability, caspases 1, 3, 8 and cell differentiation by nested RT-qPCR. The ATRA control had a strong inhibitory effect and toxicity as expected. The extracts also reduced cell proliferation by triggering apoptosis in concentration-dependent and reversing chromosome translocation, especially the lowest tested concentration of tucumã pulp extract. In the synergism, extracts act to maintain the levels of viability and apoptosis equal to the ATRA control but in contrast to drug that causes death and destruction of the genetic material, tucumã demonstrated a reduction of the gene expression indicating a possible protection against the toxicity of high concentrations of ATRA. These results suggest that fruits rich in retinoid molecules may have a cytotoxic effect against APL cells and reduced concentrations of carotenoids may act as cytoprotectors in APL cells treated with high concentrations of ATRA promoting cellular/molecular differentiation.


Download data is not yet available.

Author Biographies

Priscila Marquezan Copetti, Universidade Franciscana

Programa de Pós-graduação em Nanociências

Pablo Sebastian de Britto Oliveira, Universidade Federal de Santa Maria

Medicina Veterinária

Luis Felipe Machado Garcia, Universidade Federal de Santa Maria

Departamento de Morfologia

Rodrigo Almeida Vaucher, Universidade Federal de Pelotas

Health Sciences

Marta Medeiros Frescura Duarte, Universidade Federal de Santa Maria

Health Sciences

Ivana Beatrice Mânica da Cruz, Universidade Federal de Santa Maria

Departamento de Morfologia

Aline Ferreira Ourique, Universidade Franciscana

Programa de Pós-graduação em Nanociências

Michele Rorato Sagrillo, University Franciscana

Health Sciences


Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet (London, England) [Internet]. 1977 Mar 5 [cited 2018 May 8]; 1(8010):549-50. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673677914155

Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell [Internet]. 1991 Aug 23 [cited 2018 May 8]; 66(4):663-74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1652368

Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science [Internet]. 2002 Feb 8 [cited 2018 May 8]; 295(5557):1079-82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11834837

Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol [Internet]. 2014 Mar 1 [cited 2018 May 8];27(1): 3-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24907012

Feitosa Pinheiro R, Pelloso LA, Yamamoto M, Chauffaille M, Orlandim J. ATRA Syndrome:10 year experience. Rev Bras Cancerol [Internet]. 2003 [cited 2018 May 8]; 49(1):27-31. Available from: http://www1.inca.gov.br/rbc/n_49/v01/pdf/artigo3.pdf

Bora PS, Narain N, Rocha RVM, De Oliveira Monteiro AC, De Azevedo Moreira R. Characterisation of the oil and protein fractions of tucuma (Astrocaryum vulgare mart.) fruit pulp and seed kernel. Cienc y Tecnol Aliment [Internet]. 2001 Jul [cited 2018 May 8]; 3(2):111-6. Available from: http://www.tandfonline.com/doi/abs/10.1080/11358120109487654

Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev [Internet]. 2014 Jan 8 [cited 2018 May 8];114(1):1–125. Available from: http://pubs.acs.org/doi/10.1021/cr400126u

De Rosso VV, Mercadante AZ. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem. 2007; 55(13):5062-72.

Shanley P, Cymerys M, Serra M, Medina G. Fruit trees and useful plants in Amazonian life [Internet]. Food and Agriculture Organization [Internet]; 2011 [cited 2018 May 8]; p. 353. Available from: http://www.fao.org/docrep/015/i2360e/i2360e00.htm

Cavalcante PB. Edible palm fruits of the Brazilian Amazon. Principes [Internet]. 1977 [cited 2018 May 8]; 21(3):91-102. Available from: https://www.cabdirect.org/cabdirect/abstract/19780646386

Sagrillo MR, Garcia LFM, De Souza Filho OC, Duarte MMMF, Ribeiro EE, Cadoná FC, et al. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem [Internet] 2015 [cited 2018 May 8]; 173:741-8. Available from: http://dx.doi.org/10.1016/j.foodchem.2014.10.067

Bony E, Boudard F, Dussossoy E, Portet K, Brat P, Giaimis J, et al. Chemical composition and anti-inflammatory properties of the unsaponifiable fraction from awara (Astrocaryum vulgare M.) pulp oil in activated J774 macrophages and in a mice model of endotoxic shock. Plant Foods Hum Nutr [Internet]. 2012 Dec 15 [cited 2018 May 8]; 67(4):384-92. Available from: http://link.springer.com/10.1007/s11130-012-0323-z

Bony E, Boudard F, Brat P, Dussossoy E, Portet K, Poucheret P, et al. Awara (Astrocaryum vulgare M.) pulp oil: chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. Fitoterapia [Internet]. 2012 Jan 1 [cited 2018 May 8]; 83(1):33-43. Available from: https://www.sciencedirect.com/science/article/pii/S0367326X11002279?via%3Dihub

Jobim ML, Santos RCV, dos Santos Alves CF, Oliveira RM, Mostardeiro CP, Sagrillo MR, et al. Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism. Microbiol Res [Internet]. 2014 Apr 1 [cited 2018 May 8]; 169(4):314-23. Available from: https://www.sciencedirect.com/science/article/pii/S094450131300092X

de Souza Filho OC, Sagrillo MR, Garcia LFM, Machado AK, Cadoná F, Ribeiro EE, et al. The In Vitro Genotoxic Effect of Tucuma (Astrocaryum aculeatum), an Amazonian Fruit Rich in Carotenoids. J Med Food [Internet]. 2013;16(11):1013-21. Available from: http://online.liebertpub.com/doi/abs/10.1089/jmf.2012.0287

Avci CB, Yilmaz S, Dogan ZO, Saydam G, Dodurga Y, Ekiz HA, et al. Quercetin-induced apoptosis involves increased hTERT enzyme activity of leukemic cells. Hematology [Internet]. 2011 Sep 12 [cited 2018 May 8]; 16(5):303-7. Available from: http://www.tandfonline.com/doi/full/10.1179/102453311X13085644680104

Ramos AM, Aller P. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol [Internet]. 2008 May 15 [cited 2018 May 8]; 75(10):1912-23. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006295208001032

Veselska R, Zitterbart K, Auer J, Neradil J. Differentiation of HL-60 myeloid leukemia cells induced by all-trans retinoic acid is enhanced in combination with caffeic acid. Int J Mol Med [Internet]. 2004 Aug 1 [cited 2018 May 8]; 14(2):305-10. Available from: http://www.spandidos-publications.com/10.3892/ijmm.14.2.305

Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood [Internet]. 1991 Mar 1 [cited 2018 May 8]; 77(5):1080-6. Available from: http://www.bloodjournal.org/content/77/5/1080.long?sso-checked=true

Falanga A, Marchetti M, Giovanelli S, Barbui T. All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4). Blood [Internet]. 1996 [cited 2018 May 8]; 87(2):613-8. Available from: http://www.bloodjournal.org/content/bloodjournal/87/2/613.full.pdf

Guo J, Xiao B, Lou Y, Yan C, Zhan L, Wang D, et al. Antitumor effects of all-trans-retinoic acid on cultured human pancreatic cancer cells. J Gastroenterol Hepatol [Internet]. 2006 Feb 1 [cited 2018 May 8]; 21(2):443-8. Available from: http://doi.wiley.com/10.1111/j.1440-1746.2006.04180.x

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods [Internet]. 1983 Dec 16 [cited 2018 May 8]; 65(1-2):55-63. Available from: https://www.sciencedirect.com/science/article/pii/0022175983903034?via%3Dihub

Luo P, Lin M, Lin M, Chen Y, Yang B, He Q. Function of retinoid acid receptor α and p21 in all- trans -retinoic acid-induced acute T-lymphoblastic leukemia apoptosis. Leuk Lymphoma [Internet]. 2009 Jan 21 [cited 2018 May 8]; 50(7):1183-9. Available from: http://www.tandfonline.com/doi/full/10.1080/10428190902934936

Van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia [Internet]. 1999; 13(July):1901-28. Available from: http://dx.doi.org/10.1038/sj.leu.2401592

Gianni M, Ponzanelli I, Mologni L, Reichert U, Rambaldi A, Terao M, et al. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases. Cell Death Differ [Internet]. 2000 May 28 [cited 2018 May 8]; 7(5):447-60. Available from: http://www.nature.com/doifinder/10.1038/sj.cdd.4400673

El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys [Internet]. 2004 Oct [cited 2018 May 8]; 430(1):37-48. Available from: https://ac.els-cdn.com/S0003986104001468/1-s2.0-S0003986104001468-main.pdf?_tid=853f66af-bc71-40d1-b2de-b7ed0efacd6b&acdnat=1525817485_39d8426b84adcbbe130ef5cf40e963e4

Brielmann H, Kaufman P, Duke J, Cseke L, Warber S, Kirakosyan A. Natural Products from Plants, Second Edition [Internet]. CRC Press; 2006 [cited 2018 May 8]. Available from: https://www.taylorfrancis.com/books/9781420004472

Alizadeh F, Bolhassani A, Khavari A, Bathaie SZ, Naji T, Bidgoli SA. Retinoids and their biological effects against cancer. Int Immunopharmacol [Internet]. 2014 Jan 1 [cited 2018 May 8]; 18(1):43-9. Available from: https://www.sciencedirect.com/science/article/pii/S1567576913004104?via%3Dihub

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care [Internet]. 2014 Jan 1 [cited 2018 May 8]; 17(1):40-4. Available from: https://insights.ovid.com/pubmed?pmid=24241129

Jang M, Cai L, Udeani GO, Slowing K V, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science [Internet]. 1997 Jan 10 [cited 2018 May 8]; 275(5297):218-20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8985016

Amir H, Karas M, Giat J, Danilenko M, Levy R, Yermiahu T, et al. Lycopene and 1,25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr Cancer [Internet]. 1999 Jan 4 [cited 2018 May 8]; 33(1):105-12. Available from: http://www.tandfonline.com/doi/abs/10.1080/01635589909514756

Kawaii S, Lansky EP. Differentiation-Promoting Activity of Pomegranate (Punica granatum) Fruit Extracts in HL-60 Human Promyelocytic Leukemia Cells. J Med Food [Internet]. 2004 Apr 7 [cited 2018 May 8]; 7(1):13-8. Available from: http://www.liebertonline.com/doi/abs/10.1089/109662004322984644

Conney AH, Lou YR, Xie JG, Osawa T, Newmark HL, Liu Y, et al. Some Perspectives on Dietary Inhibition of Carcinogenesis: Studies with Curcumin and Tea. Exp Biol Med [Internet]. 1997 Nov 1 [cited 2018 May 8]; 216(2):234-45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9349692

Tsai T-C, Huang H-P, Chang Y-C, Wang C-J. An Anthocyanin-Rich Extract from Hibiscus sabdariffa Linnaeus Inhibits N -Nitrosomethylurea-Induced Leukemia in Rats. J Agric Food Chem [Internet]. 2014 Feb 19 [cited 2018 May 8]; 62(7):1572-80. Available from: http://pubs.acs.org/doi/10.1021/jf405235j

Hou D-X, Ose T, Lin S, Harazoro K, Imamura I, Kubo M, et al. Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved. Int J Oncol. 2003; 23(3):705-12.




How to Cite

Copetti, P. M., Oliveira, P. S. de B., Garcia, L. F. M., Vaucher, R. A., Duarte, M. M. F., Krause, L. F., Cruz, I. B. M. da, Ourique, A. F., & Sagrillo, M. R. (2019). Tucumã extracts decreases PML/RARΑ gene expression in NB4/APL cell line. Archives in Biosciences & Health, 1(1), 77–98. https://doi.org/10.18593/abh.17200



Articles - Original research

Most read articles by the same author(s)